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Abstract

Anthropogenic greenhouse gas emissions are now well-understood to be caus-
ing damaging changes to the climate. One of themany ways in which the climate
is changing is through extremeweather events. Given the severe consequences
of such events, understanding how human influence on the climate is affecting
them is vital. This is the aim of the young field of ‘extreme event attribution’.
There now exist many established methods for attributing individual weather
events to climate change, from probabilistic approaches utilising large climate
model ensembles to deterministic storyline approaches. However, questions
still remain over the reliability of these approaches, especially when considering
the most unprecedented events. In this thesis, I show how weather forecast
models could provide us with such reliable information about human influence
on extreme weather — focusing on extreme heat. These models are state-
of-the-art and can be shown to be unequivocally able to simulate the detailed
physics of specific extreme weather through successful prediction. I develop
a perturbed initial- and boundary-condition approach within an operational
forecasting system that aims to produce forecasts of individual events as if
they had occurred in a world without human influence on the climate. These
‘counterfactual’ forecasts can be used to assess how not only the intensity, but
also the probability of such events has changed. Although extreme weather
attribution typically focuses on the past, the same approach could be used to
produce forecasts in warmer future worlds — thus providing vital information
about how the most damaging weather may be expected to change in the
future. I explore this theme of extreme weather projection, examining a novel
approach to producing large climate model ensembles that span the range of
uncertainty in future extreme weather. This work complements the specific
nature of extreme event attribution, and they could together provide crucial
information about climate risk.
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Abstract

Anthropogenic greenhouse gas emissions are now well-understood to be causing

damaging changes to the climate. One of the many ways in which the climate is

changing is through extreme weather events. Given the severe consequences

of such events, understanding how human influence on the climate is affecting

them is vital. This is the aim of the young field of ‘extreme event attribution’.

There now exist many established methods for attributing individual weather

events to climate change, from probabilistic approaches utilising large climate

model ensembles to deterministic storyline approaches. However, questions

still remain over the reliability of these approaches, especially when considering

the most unprecedented events. In this thesis, I show how weather forecast

models could provide us with such reliable information about human influence on

extreme weather — focusing on extreme heat. These models are state-of-the-art

and can be shown to be unequivocally able to simulate the detailed physics of

specific extreme weather through successful prediction. I develop a perturbed

initial- and boundary-condition approach within an operational forecasting system

that aims to produce forecasts of individual events as if they had occurred in a

world without human influence on the climate. These ‘counterfactual’ forecasts

can be used to assess how not only the intensity, but also the probability of such

events has changed. Although extreme weather attribution typically focuses

on the past, the same approach could be used to produce forecasts in warmer

future worlds — thus providing vital information about how the most damaging

weather may be expected to change in the future. I explore this theme of extreme

weather projection, examining a novel approach to producing large climate model

ensembles that span the range of uncertainty in future extreme weather. This

work complements the specific nature of extreme event attribution, and they could

together provide crucial information about climate risk.
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The balance of evidence suggests a discernible hu-

man influence on global climate.

— IPCC, SAR, 1995

1
Introduction

In this chapter I introduce the problem of attribution of individual extreme weather

events to anthropogenic climate change. I review the current methodologies and

frameworks that address this problem, in particular the contrasting storyline and

probabilistic approaches to attribution. Although these frameworks are gaining

acceptance and maturity, I suggest that a weather forecast-based approach could

further increase the trustworthiness of attribution studies. Finally, I provide a

conceptual sketch of these various attribution frameworks within a simple non-

linear dynamical system and describe some of the key physical processes behind

the class of extreme event that this thesis is largely concerned with: heatwaves.

1



2 1. Introduction
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1. Introduction 3

1.1 The problem of extreme event attribution

The link between greenhouse gas (GHG) emissions and anthropogenic climate

change has been established for over a century (1). In recent decades, significant

advances have been made in understanding the human influence (or ‘finger-

print’) in multi-decadal trends in global and regional climate (2–4). A number

of statistical advances developed around the millennium (5–9) have allowed

so-called ‘detection and attribution’ of human influence on a very wide range of

climate variables in the decades since, including global temperature (10–12),

regional temperature (13), global precipitation (14), global soil moisture (15),

ocean salinity (16), tropospheric thickness (17 ), and many others (3). However,

such large-scale and long-term changes in mean climate are far detached from

individual human perception (18). On the other hand, individuals are able to

relate to extreme weather events, due to the immediate and severe impacts they

can have. This interest in such damaging events led scientists in the early 2000s

to consider whether it would be possible to detect and attribute human influence

on an individual extreme weather event (19).

What do I mean by detection and attribution of human influence in the context

of a single extreme event? Possibly the simplest way to pose this question in the

aftermath of such an event would be to ask: ‘was this weather caused by climate

change?’. However, this framing sets the standard of proof at an exceptionally

high bar — if the event were at all possible without human influence in any sense,

regardless of how unlikely it might be, then the answer would be ‘no’. Despite

the prevalence of this framing in both scientific and non-scientific circles (20,

21), and some recent studies that claim to have achieved this standard of proof

(22), it is not a particularly useful or informative question to ask, and may have

contributed to the belief that attribution of individual weather events is not possible

(23). A more relevant and answerable question might be: ‘has anthropogenic
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4 1.1. The problem of extreme event attribution

climate change made this event more likely?’. This was the question posed in

2003 by Myles Allen in the seminal commentary “Liability for climate change” (19),

widely acknowledged as the first time the idea that individual extreme events

could be attributed to external drivers such as human influence was proposed

(24). This frequency-based question has been tackled in many studies since (25).

An alternative question could be: ‘has anthropogenic climate change made this

event more intense?’. Although Allen et al. (20) suggested that it makes little

sense in the context of a nonlinear and chaotic weather system, many studies

have now examined this magnitude-based question (26).

These two different framings of the same ultimate question have led to

apparent discrepancies (27 ). By their nature, extreme events nearly always

have a significant contribution from the natural internal variability of the weather.

This natural contribution often far exceeds any estimated human contributions

to the event magnitude. However, these ‘small’ human-induced changes in

magnitude can lead significant changes in event probability. In this way, an event

can be accurately described as both ‘mainly natural in origin’ (26) and having

‘an approximate 80% probability that it would not have occurred without climate

warming’ (28). I, and many others (29–34) believe that both of these framings are

useful. Although I will develop these ideas further in due course, one context in

which understanding changes in both probability and magnitude can be important

is adaptation to climate change. Changes in probability are important for societal

resilience: how strong do I need to make a flood barrier given an increase in

the number of floods of a certain severity? ; while changes in magnitude are

vital for preparing for the potentially very non-linear impacts of extreme weather

events: how high do I need to make a flood barrier to ensure that it does not

fail given an increase in the severity of a 1-in-100 year flood?. Of course, the

picture is more nuanced than this simplistic view, but my underlying point that

understanding both changes in probability and magnitude are important is now
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1. Introduction 5

widely accepted. Hence, the question that this thesis is largely concerned with

answering is: ‘how has human influence on the climate affected both the

probability and intensity of specific extreme weather events?’.

1.2 Motivating the question

Now that I have posed the question, before I move on to how we might answer

it, I think it would be useful for me to discuss why we want to answer it. In

short: what’s the point of this thesis?

To begin, I return to “Liability for climate change” (19), now focusing on

the motivation for extreme event attribution. The motivation behind extreme

event attribution as proposed in “Liability for climate change” is compensation for

damage to individuals caused by climate change or, as Allen puts it,

Will it ever be possible to sue anyone for damaging the climate?

Allen suggests that in the future those affected by particular extreme weather

may, given sufficient scientific certainty, be able to claim compensation from GHG

emitters for damages caused by the extreme weather. He proposes a framework,

grounded in concepts from epidemiology (35), in which emitters pay for the

‘fraction’ of an extreme weather event that they caused, even in the absence

of absolute causation. This fraction is estimated probabilistically based on the

change in likelihood of the event in a world in which the emissions never happened

(i.e. if the event is half as likely to occur without the emissions, then the fraction

of the event that is attributable to the emitters is 50%). This specific application

is therefore using extreme event attribution as evidence in environmental tort

law. Since Allen (19), much has been written in relation to this application. Allen

et al. (20) presents an overview of the state of climate change detection and

attribution aimed at legal professionals, concluding with a set of related questions

for the legal community. More recently, Stuart-Smith et al. (36) provided a set of
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6 1.2. Motivating the question

suggestions for potential plaintiffs on how to best make use of the climate science

available (noting that evidence used in previous cases ‘lags substantially behind

the state of the art’). Coming from the other side of the coin, Marjanac et al. (37 )

provide suggestions for climate change scientists, emphasising that ‘clear and

confident expression of science in a manner that can be applied by non-scientists,

including lawyers’ is key. Elisabeth A. Lloyd has authored a number of studies

exploring various issues including the different standards of proof in scientific and

legal contexts (38); how different approaches to extreme event attribution can

complement one another to provide the most useful picture of climate change

impacts for a broad range of contexts (39, 40); and finally, examines a specific

tort law case that made use of extreme event attribution (41). For a thorough

review of both the science and legal context of extreme event attribution, written

from a legal perspective, with reference to specific cases, I recommend Burger

et al. (42) and Marjanac and Patton (43).

In addition to the original application in tort law suggested in Allen (19),

more recently it has been suggested that extreme event attribution could ‘play

a significant role in quantifying loss and damage’ (44). Loss and damage is

generally understood as the unavoidable adverse impacts of climate change

(45), and has become a key piece of international climate change policy since

the inclusion of Article 8 of the Paris Agreement. Several recent extreme event

attribution based studies may have considerable influence in the future in this

space, including Clarke et al. (46), who set out a framework for recording key

details of high-impact weather events as a new source of evidence for global

stocktakes on loss and damage; and Otto et al. (47 ) and Lott et al. (48), who adapt

conventional extreme event attribution approaches to estimate the contributions

of specific emitters to individual extreme weather events (as opposed to the more

usual broad ‘human influence’ considered). Perhaps we will not have to wait

much longer before the question posed by Allen is answered?
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The other key non-scientific motivating factor for extreme event attribution is

the public engagement and interest in the research (32). The ‘headline’ number

in climate science has for a long time been change in global mean temperature

(49–51). While this is clearly a very important number as the primary metric of the

impact that humanity is having on the climate, it is not a number that individuals

can easy relate to due to the large scales involved and indirect nature of the

associated impacts. On the other hand, extreme weather events are phenomena

that are actually experienced by individuals — and regularly reported on by the

media. Since extreme weather events can cause severe and direct socioeconomic

impacts (52), increases in their frequency would likely be a considerably more

relatable and concerning consequence of climate change than the distant change

in global mean quantities. Previous work has shown that extreme event attribution

may be an exceptionally useful tool for climate change communication (53), though

can prove unhelpful if results are not clear and comprehensible for a general

audience (for example if different attribution studies regarding a single event

appear to provide conflicting headline results, 54). A specific study investigating

the experience-perception link of climate disasters in the context of Floridians

that had experienced hurricane Irma found that this experience increased both

their belief and concern in global warming (55), though a more recent study

looking at connections between local weather and climate change awareness

in Germany did not find a link (56).

There are also a number of more scientific motivating factors behind studying

extreme event attribution. The first of these is the improved understanding of how

climate change affects extreme weather events. By studying a single weather

event in detail, we can gain a significant amount of knowledge about not only the

processes that drove that event, but also about how those processes may have

changed due to human influence on the climate. The nature of extreme events

means that they are often driven by either unusual processes — or combinations
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8 1.2. Motivating the question

of processes — that rarely occur. As such, they provide an opportunity to explore

these rare drivers in detail and obtain a better understanding of their underlying

physics. One example of this improved understanding has been the role of soil

moisture on heatwaves (57–59).

On a related note, this same granular look at a single event allows us to

examine the performance of the dynamical models we use by ensuring that the

processes and physics of the modelled climate match those same processes

in the real world (60, 61). This is especially true for weather forecast models,

which aim to be able to precisely reproduce the real world. Even in the case

of climate models, extreme event attribution studies have identified key issues

in the simulations produced by climate models such as poor representation of

climate variability (62 , 63).

The final reason I shall mention here — though I discuss it further in the

discussion section of this thesis — is that how extreme events are changing

in the present and will continue to change in the future is a question of vital

importance for adaptation to climate change. Although the focus of attribution

is typically understanding how extreme events have changed relative to a world

without human influence on the climate, another side of a very similar coin is

understanding how such influence will continue to change them into the future

(64). This projection of future extremes will be vital for effective and targeted

adaptation planning given the severe damage such events can cause. In addition

to policymakers, a large proportion of the industrial sector, and especially the

financial sector, need to know how climate change is affecting the risk from

extreme weather on a continual basis in the present day. For example, insurance

and reinsurance companies base their view of risk on historical loss estimates —

but in the case of many types of extreme weather event the baseline is shifting

with climate change and historical data may not necessarily be representative

of the present. This shifting baseline is something that extreme event attribution
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is well-placed to inform on.

1.3 Answering the question

At this point, I have discussed the question that this thesis is primarily concerned

with, and the reasons why it is of broad importance. Now, I shall describe and

explore the ways in which previous studies have approached this question, in

particular focusing on the probabilistic (often “conventional”, 25) and storyline

(65) frameworks.

1.3.1 Probabilistic attribution

Probabilistic attribution seeks, ultimately, to determine the change in probability of

an extreme event arising due to some external driver. This was the approach to

extreme event attribution proposed by Allen (19) and first applied by Stott et al. (25)

to the 2003 European heatwave. They applied an optimal fingerprinting technique

(5, 6) to transient climate model simulations. They used five simulations, one

set of four with all climate forcings included, plus one with natural forcings only;

generating scaling factors of the correspondence between the modelled response

and observed changes by regressing each set onto observed central European

summer temperature. The scaling factors could then be used to determine the

1990s temperature anomalies attributable to all forcings combined and natural

forcings alone. A third control run at a fixed, pre-industrial level of forcing was

used to estimate internal variability corresponding likelihood functions for these

temperature anomalies. They finally used a peak-over-threshold extreme value

analysis of the same control run to determine the probability of exceeding the

temperature of the pre-2003 hottest summer in worlds with and without climate

change by adjusting the mean summer temperature to the estimated 1990s
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10 1.3. Answering the question

temperature anomalies both with and without anthropogenic forcing. These

probabilities (and associated uncertainty) could be used to determine the likelihood

function of the change in risk of the heatwave attributable to human influence.

This fairly involved statistical approach (in particular, the necessity for the use of

a control run to estimate uncertainty due to internal variability) has been largely

replaced by the use of much larger single- or multiple- model ensembles.

The next advance in probabilistic extreme event attribution came with Van

Oldenborgh (66), who developed a methodology for estimating the change in risk

of an extreme event using observations alone. Van Oldenborgh took observed

timeseries of autumn temperatures measured by the De Bilt weather station,

and removed the climate change signal by regression onto low-pass filtered

global mean surface temperature (GMST, a reasonable proxy for anthropogenic

influence on the climate, given the small contributions from natural forcing). Using

this detrended series and extreme value analysis, he then computed the return

period of the exceptional warm 2006 autumn in Europe, and compared it to the

return period estimated using the original series. This method was later extended

to use the return period to compute the return period of the extreme for both

the present-day and pre-industrial period by shifting the detrended series by the

attributable trend computed in the regression (eg. 61, 63). In this way, the change

in risk between pre-industrial and present climates can be estimated. It is worth

noting that this methodology does not formally attribute any changes in risk to

anthropogenic influence, since trends in local climate may be influenced by other

factors, and no use is made of a counterfactual world without human influence on

the climate (since no observations of such a world exist). Formal attribution could

theoretically be achieved by instead performing a multiple regression analysis

of the extreme series onto anthropogenic and natural signals (67 ), but this is

rarely done in practice. This method can also be applied to transient simulations

from climate models.

Typeset on January 5, 2023



1. Introduction 11

The final advance that I shall highlight is from Pall et al. (68), and was the first

instance where specific fixed forcing (as opposed to transient) factual and coun-

terfactual simulations were used. Pall et al. generated very large (2000+ member)

atmosphere-only climate model ensembles of autumn 2000. One ensemble

was driven using observed sea surface temperatures (SSTs) and sea ice, and

corresponding atmospheric conditions (GHG, aerosol and ozone concentrations)

for that time. The other four were driven using atmospheric conditions for the

year 1900, and subtracting four estimates of attributable twentieth-century SST

warming from the observed SSTs; the four estimates of attributable warming

were derived from four different coupled climate model simulations. River runoff

for England and Wales in the factual ensemble was compared to runoff in the

four ‘naturalised’ counterfactual ensembles to determine the difference in risk of

exceeding the value actually observed in autumn 2000 in the different climates.

In this case, the ensembles are sufficiently large that extreme value analysis

was not required (the – SST conditional – return period could be calculated by

simply counting the number of members that exceeded the observed threshold

and dividing by the total ensemble size in each case). This methodology is

attractive due to the clear and straightforward statistical analysis of the large

ensembles (with no reliance on extreme value analysis or optimal fingerprinting

techniques). However, it does generally require very large ensembles of the

time period when the event took place (i.e. autumn 2000 in this case); and is

conditional on the prescribed SST pattern (requiring either that anthropogenic

influence is not affecting interannual modes of SST variability, or that the extreme

in question is independent of such modes).

The ‘standard’ approach to probabilistic attribution in the present draws upon

each of these previous advances (61). Here I am taking the World Weather

Attribution project (WWA) methodology as standard, since they are the most

prolific group both in terms of number of events analysed and media coverage of
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12 1.3. Answering the question

their results (69), though other methodologies exist (70). Their approach involves:

1. Defining the event. Extreme events are, by the nature of the weather,

exceptionally high dimensional and could be described in a practically

unlimited number of ways (i.e. what variables to use? What spatial scale?

What temporal scale?). However, to be able to analyse changes to such

events, we must be able to define them quantitatively. TheWWA attempts to

select a metric that most closely corresponds to the impacts of the extreme

event in question, taking in account what questions are being asked by

the various stakeholders. For example, if the key impact of interest is

heatwave-associated mortality, then peak 3-day moving average daily

maximum temperatures may be selected due to their close connection

to health impacts (71). Once a metric has been chosen by which to define

the extreme event, they use a ‘class-based’ framing considering all events

of a similar magnitude, often by choosing the annual maximum values of the

metric. This class-based framing results in a largely unconditional analysis,

which I will discuss further below.

2. Analysing trends in observed data following Van Oldenborgh (66). This

is typically done by fitting an appropriate distribution whose parameters

shift or scale with low-pass filtered GMST. The shifting or scaling depends

upon the chosen metric and its observed or expected response to climate

change. For example, the temperature based heatwave metrics that are

the primary concern of this thesis are typically assumed to simply shift with

global warming. From this GMST-covarying distribution, the return period is

then computed for present-day and pre-industrial values of GMST. From

these returns periods the change in risk of the observed extreme can be

calculated. As with Van Oldenborgh (66), these changes in risk are not

strictly attributable to human influence on the climate due to the lack of a
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no-human counterfactual.

3. Analysing simulations from as many models as possible. Transient model

simulations are analysed in an identical way to observations. Fixed forcing

simulations are analysed following Pall et al. (68). Only models which are

able to closely represent the observed climate are considered – evaluated

on the basis of the trends and distribution parameters implied by the model

data.

4. Synthesising these various strands of evidence. The aim behind using as

many lines of evidence as possible, combining statistical and numerical

models, is to try and determine the most robust conclusion possible within

the context of the associated uncertainties.

This ‘standard’ approach has been refined over the past decade by the WWA

team (69), learning through application to a wide range of locations and types

of extreme. The widespread recognition and understanding of extreme event

attribution by the general public is due, in no small part, to this approach and

how rapidly the WWA team have been able to apply it to extreme events in the

past few years. Their rapid response has meant that they are able to answer

the questions people ask in the aftermath of such events when they are actually

asking them – rather than following a lengthy peer-review process. However,

this standard probabilistic approach to attribution is not without issues of its own

– hence this thesis – which I shall now discuss.

The first issue arises due to the unconditional use of climate models. By

their nature, extreme events are typically produced by exceptional physical

processes, or combinations of processes. The type of models used in extreme

event attribution are typically coarse (O(100 km)), and may well not be able

to physically represent all the processes involved in the production of specific

extreme events even if they can accurately represent the average climate (60,
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14 1.3. Answering the question

72 , 73). Such models still have serious known biases relevant to the simulation

of extremes, including poor representation of Euro-Atlantic blocking (74, 75),

which is a key synoptic driver of heatwaves over the continent. These biases

become even more important when considering not only the models’ ability to

simulate the present climate, but also their response to external forcings such

as anthropogenic climate change (76, 77 ). The use of biased models can lead

to potentially incorrect quantitative attribution statements (62 , 78).

The second key issue derives from the treatment of individual extremes as

one of an event class. For example, in the conventional probabilistic approach to

attributing a particular heatwave, one might consider all the previous annual max-

imum temperatures (e.g. in order to apply extreme value analysis as discussed

above). However, the particular heatwave in question might have arisen from

a very different – possibly unique in the context of the relatively short historical

record – set of meteorological circumstances and physical drivers compared to

all the previous heatwaves. This not only renders such extreme value analysis

as is often performed potentially inappropriate (as the heatwave in question is

drawn from a different underlying distribution to the others), but also any estimated

climate change responses. What if the combination of the particular processes

involved in producing the heatwave in question responds fundamentally differently

to the processes that have generated past heatwaves?

The final issue I shall discuss is the one that has been most often commented

on in previous work: the risk of type II errors (72 , 79). This risk arises because

some aspects of the climate system response to external forcing are much more

certain and well-understood than others. For example, the thermodynamic as-

pects of climate change are broadly very well understood and certain: rising GHG

concentrations lead to a thicker troposphere, thus raising surface temperatures

and increasing the moisture capacity of the troposphere. On the other hand, the

dynamic aspects of climate change are considerably less certain, with models
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often disagreeing over the direction of changes in atmospheric dynamics (80).

At this point, I note that this is not an entirely independent issue to the first

issue discussed since much of this uncertainty arises due to model biases and

imperfections. Since extreme events are often driven by a combination of both

thermodynamic and dynamic processes, the very certain thermodynamic climate

change impacts can be masked to some extent by the much less certain dynamic

climate change impacts. This uncertainty can lead to falsely asserting that there

is no overall impact – a type II error. Trenberth et al. (72) argue that it is better

to focus on the aspects of the event that are well understood, for example by

conditioning analyses upon the large scale circulation of the event in question,

thus removing the potential very uncertain dynamic aspects of climate change.

This suggestion was extended and discussed at length by Shepherd (79), and has

become the basis for a more recent development in extreme weather attribution:

the storyline approach.

1.3.2 Attribution through storylines

The storyline approach (or ‘Boulder’ approach, 24) aims to determine the con-

tribution of various causal factors to the extreme event, and considers how

anthropogenic climate change has affected those factors (and thus the extreme)

in a deterministic manner. This approach was first applied by Hoerling et al.

(65) to the 2011 summer combined Texas heatwave and drought. They used

a variety of simulations, including atmosphere-only and coupled climate model

runs, and seasonal forecasts. They examined the influence of rainfall deficit in the

months preceding the heatwave, SST influence on the drought, and the overall

predictability of the extreme at the start of May. As such, their intended goal was

much broader than just assessing the anthropogenic contribution to the heatwave,

aiming to advance the overall predictability of such events by examining and
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understanding many drivers, both human and natural. This approach of trying to

disentangle and quantifying the contributions of many different drivers individually

laid the basis for the storyline approach to extreme event attribution.

The next key text that I discuss is a perspective, “Attribution of climate extreme

events” by Trenberth et al. (72). This highlighted the potential for conventional

probabilistic attribution to suffer from type II errors due to the large component of

extreme weather events that arises from internal variability of the climate, thus

masking any clear anthropogenic signals. The authors suggest that attribution

studies should focus on the drivers of extreme weather and associated impacts

whose response to climate change is determinable given the present state of

knowledge. For instance, following a tropical cyclone event, rather than focussing

on the probabilistic question of whether the unconditional probability of an event

has changed, which would require assessing potential changes in large scale

circulation patterns; they suggest focussing on aspects of the event whose

response to climate change is well-understood and physically motivated, such as

the increase in SSTs and available moisture leading to a deeper storm and more

intense precipitation. They distil their approach down to answering the conditional

question: ‘given the change in atmospheric circulation that brought about the

event, how did climate change alter its impacts?’. In general, this is equivalent

to determining how the known changes in the climate system’s thermodynamic

state have affected the event in question. Of particular interest in relation to

this thesis is their suggestion that ‘one needs to be able to simulate the event in

question (perhaps with short-term forecasts...)’, since this is a strong motivating

factor for the overarching approach taken here.

A key figure in the recent advancement of the storyline approach is Theodore

Shepherd. Shepherd (79) discusses the differences in framing between the prob-

abilistic and storyline approaches to extreme event attribution and demonstrates

that they can be cast into a single framework based on conditional probabilities.
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He also discusses similar issues with probabilistic attribution to those I have

outlined above, including the class-based framing and climate model deficiencies.

In Shepherd et al. (81), the authors present an argument for the use of storylines

more generally to understand and communicate the physical impacts of climate

change in both present events and future projections. They summarise their

argument in four reasons:

• improving risk awareness due to the episodic (experience-based) nature

of storylines as opposed to the semantic (knowledge-based) nature of

conventional probabilistic approaches, given humans are more likely to

respond to episodic rather than semantic information;

• strengthening decision-making by allowing decision-makers to work back-

wards from a particular vulnerability incorporating climate change infor-

mation with other factors, or to develop stress-tests based on (modified)

historical events;

• physically motivated partitioning of uncertainty - explicitly drawing the dis-

tinction between the more certain thermodynamic aspects and the less

certain dynamic aspects of climate change. The basis for this argument is

set out in Trenberth et al. (72) as discussed above;

• exploring the boundaries of plausible risks by combining information from

climate model simulations with scientific understanding of the climate sys-

tem rather than simply relying on quantitative results from climate model

simulations. In this way, they suggest that the storyline approach could

guard against surprise impacts from processes not well simulated or whose

uncertainty is not well reflected by the current range of climate model

projections, using local-scale precipitation events as a key example.

Now that I have discussed the formal basis for the storyline approach, here
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I present a selection of recent studies that apply it to various extreme weather

events. Van Garderen et al. (82) introduces a methodology for extreme event

attribution based on constraining the large-scale circulation in a climate model

to that observed in reality. They employed global spectral nudging to push the

mid-troposphere to upper-stratosphere (the ‘free’ atmosphere) towards reanalysis

data, allowing the thermodynamic fields they were interested in (temperature and

moisture) to respond to the imposed circulation. Their aim was to ‘constrain

the model as little as possible... while still achieving an effective control of

the large-scale weather situation’. They produced factual and counterfactual

nudged simulations of the 2003 and 2010 heatwaves in Europe. The factual

simulations were based on using present-day observed reanalysis, SST, and

GHG concentration data; while in the counterfactual simulations, the SSTs were

perturbed based on estimated changes since the pre-industrial, and GHG concen-

trations were changed to their pre-industrial levels. They compared their factual

and counterfactual simulations to find that (domain-averaged) anthropogenic

contributions to the 2003 and 2010 heatwaves were 0.6 °C and 2 °C respectively.

This approach was further developed by Benítez et al. (83). Unlike Van Garderen

et al. (82), who used prescribed SST patterns and an atmosphere-only model,

Benítez et al. used a coupled climate model, in order to permit ocean-atmosphere

interactions that may be associated with the particular event of interest. To do

this, they branched from free-running simulations of a coupled climate model

at particular levels of global warming (pre-industrial, present-day, 2 °C and 4

°C). They allow for one year of spin-up time to allow slowly responding fields

to develop prior to the event of interest. The event that they focussed on was

the July 2019 heatwave in Germany, which they assessed had been made 2 °C

warmer since pre-industrial times. Overall, their analysis could be considered an

archetypal storyline approach to a heat extreme, and provides a useful contrast

to the approach developed over the course of this thesis. The final study I
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discuss here, Schaller et al. (84), does not concern a heatwave, but a flood

event. However, it is notable due to the authors’ comprehensive analysis of

a single event and focus on using operational systems as they are familiar to

the stakeholders who would benefit most from the information provided by the

study. They combined high-resolution climate model simulations and regional

model downscaling of the same simulations with hydrological models to provide

physically plausible storylines of present-day and future flooding associated with

atmospheric river events in western Norway.

The storyline approach is able to address several of the issues with probabilistic

event attribution, and is able to provide valuable information about the changes

in extremes due to human influence on the climate in both the present-day and

future. However, it is unable to quantitatively estimate the changes in probability

of such extremes — the aim of the probabilistic approach. I argue that provision

of this probabilistic information remains important for public communication of

climate change risks and potential future litigation. In this thesis I primarily

explore an approach that leverages numerical weather prediction models in

order to synthesise the storyline and probabilistic frameworks, alleviating many

of the issues of the latter whilst maintaining the ability to provide meaningful

probabilistic information.

1.3.3 A forecast-based approach

Although often considered distinct fields of research, weather prediction and

climate projection are ultimately seeking to understand the same physical system

— just on very different timescales. As such, the models used in each field

share many similarities and components. For example, the United Kingdom Met

Office (UKMO) Hadley Center uses a unified framework for weather and climate

modelling based on their ‘Unified Model’ (85). Differences between the two begin
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to arise when considering the questions that each field has traditionally aimed to

answer. Weather prediction tries to determine how the atmosphere will evolve

over typical timescales of hours to months. Due to the chaotic nature of the

atmosphere (86), a key part of weather forecasting is estimating its initial state as

accurately as possible — weather prediction is an initial value problem. Since

many weather phenomena of interest are highly localized (for example, convective

storms in the UK), providing information on a similarly local level is important,

hence weather prediction models are typically run at very high resolutions. Figure

1.1 compares the typical resolutions of weather prediction and climate models.

On the other hand, climate simulation and projection does not try to estimate

what the precise state of the earth system will be in the decades to come, but to

produce realisations that lie within the space of all possible states. By averaging

such realisations over many years or different simulations (ensembles), you can

build up a complete picture of this space (e.g. ‘Weather is what you get, climate

is what you expect’). An important aspect of climate projection is that where this

space lies depends strongly on an external forcing you apply to the system —

climate projection is a boundary-value problem. Due to the very long simulations

and traditionally larger spatio-temporal scales of interest, climate models are

typically run at much lower resolutions (Figure 1.1). This difference in typical

resolution provides the first justification for why forecast-based approaches to

extreme event attribution: using these higher-resolution forecast models may

resolve many of the known issues and biases in climate models, especially in

the context of extreme weather (60, 73, 74, 87 ).

One way in which weather prediction and climate simulation or projection

fundamentally differ is in the extent to which they can be validated. Forecasts

from weather models are able to be validated against reality (once reality has

come to pass), but this is not possible with climate models since they do not aim to

precisely replicate reality (rather to produce a possible realisation). This intrinsic
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Typical weather prediction model (~20 km) Typical climate model (~130 km)

Figure 1.1: Comparing typical horizontal resolutions of weather and climate models.

Left panel: wind gusts at 10 m on 2021-10-01 00:00:00 over Europe, based on reanalysis

(88), at the 18 km resolution (Tco639) of the European Centre for Medium-range Weather

Forecasts (ECMWF) Integrated Forecasting System (IFS) ensemble prediction system.

Right panel: the same image, but at the 130 km resolution (N96) of the HadGEM3-

GC3.1-LL climate model. This is arguably a generous comparison to the climate model,

since this figure shows the same field at different resolutions, while it is conceivable that

some features would not be able to be simulated at all in the lower resolution climate

model.

validation of weather forecast models has led to a significant amount of work in

which they are used to examine the sources of biases and errors in climate models

(89), or are used to calibrate climate projections (90, 91). This is the philosophy

behind seamless prediction: that in a unified weather to climate prediction system,

insights gained from the validatable initial-value problem can be transferred to

improve the confidence in answers to the boundary-value problem. In the context

of extreme event attribution, this idea has been discussed and examined by

Bellprat et al. (62), Palmer and Weisheimer (77 ), Bellprat and Doblas-Reyes

(78), Weisheimer et al. (92), and Lott and Stott (93). These studies have typically

focussed on using the known ‘reliability’ of weather prediction systems to calibrate

the outcome of probabilistic extreme event attribution. Here I use reliability in

the statistical sense, meaning that the forecast probabilities of a particular event

match up with the observed frequency at which that event occurs (94). Although

such calibration is vital for improving the trustworthiness of existing probabilistic
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approaches to attribution based on climate models, I argue that even more benefit

would be gained by using weather prediction systems for attribution directly. The

key advantage of using a weather prediction system directly is that you can know

with certainty if the model is capable of simulating the event you are interested in.

If a weather forecast model is able to successfully predict an extreme event, then

you can have considerable confidence that the model is able to represent all the

important physical processes involved in the development of the event. You can

also have greater confidence in the response of these — well represented in the

model — processes to external forcing. This translates to increased confidence

in any attribution statements that arise from analysis of the model. The same

is not true of climate model based analyses. It would be incredibly difficult and

involved to test whether a climate model is even able to simulate a specific

extreme weather event and all the associated processes and drivers as they

evolved in reality. In the conventional approach to probabilistic attribution, the

validation of models is purely statistical (61).

It is important to note that in both weather forecast and climate models, the

skill of the dynamical model itself is only one part of the picture. For climate

models, the other part is how accurately the boundary conditions are specified

(95). The accuracy of the initial conditions makes up this other key part in the

case of forecast models (96). As such, both of these components will contribute

towards the robustness of a forecast-based approach to attribution. Their relative

contributions will depend on the specific features of the particular event in question,

and so it is possible that for some cases, the quantitative attribution results

may be dependent on the specific forecast model or initial condition production

methodology. I discuss this model-dependency further in the closing chapter of

this thesis. However, exploring how this event-dependent partitioning of forecast

skill affects quantitative attribution results lies outside the scope of this thesis —

though I suggest that once (if) a forecast-based attribution system is developed,
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then further investigation in this direction would be extremely worthwhile. Overall,

the key point I wish to make here is that, regardless of the specific source of the

skill, we are able to validate whether a weather prediction system as a whole is

able to represent an event of interest accurately, which provides a considerable

degree of confidence in the model that we cannot have when using climate

models, as argued by Palmer and Weisheimer (77 ), Palmer et al. (90), and

Weisheimer et al. (92).

This intrinsic validation of using weather forecast models directly is related

to another motivating factor. Given a successful prediction, weather forecast

ensembles produce realisations of the specific event of interest. This means that

an attribution analysis based on such an ensemble can claim to be very near to

attributing the individual weather extreme, and therefore answering the question

of how human influence has affected the probability of that precise event. This

is in contrast to conventional probabilistic approaches based on climate models,

which frame attribution analyses in terms of the event as one occurrence of a

particular class of events (e.g. the 2019 heatwave in Europe might be abstracted

into the class of annual maximum temperature events). As discussed above,

this means that the physical processes behind the event, that may be unique

to that specific event, are not taken into account. The question answered by

conventional probabilistic attribution is somewhat different and less specific. For

the 2019 heatwave example, this question would be: how has human influence

affected the probability of the peak annual temperature exceeding the value

experienced during the 2019 heatwave (97 )? The more specific nature of the

question answered by a forecast-based approach brings it closer to the episodic

nature of the storyline approach. It may also be useful when considering the

legal contexts in which attribution studies are used (41).
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Operationalising attribution

One of the traditional ‘problems’ with extreme event attribution has been that the

timescales on which scientific research is published are very different from the

timescales on which the public and other stakeholders are (increasingly) most

interested in. When an extreme weather event occurs, interest in the media

is usually higest in the days immediately following the event, while a scientific

analysis would typically take months to be published. A second problem that is

not unique to extreme event attribution is that studies tend to be focussed on

the same regions that the research is conducted in. This leads to a bias in the

coverage of such studies, with far more studies looking at events in the global

North, especially Europe. The WWA has sought to alleviate this bias by engaging

with local researchers (69). A proposed solution to these issues is an operational

attribution system, that could provide rapid results when extreme events occur

using a well-established and consistent approach (34).

There are a number of practical reasons why a forecast-based approach is

an attractive proposition as the basis for an operational attribution system (in

addition to the science-focused arguments presented above). Firstly, weather

models are run routinely on sub-daily cycles. If a methodology were created that

allowed an operational weather forecast system to be easily switched to run in

a counterfactual pre-industrial mode, then such simulations could be generated

extremely rapidly. With sufficient interest and funding in the future, perhaps such

counterfactual simulations could be run regularly alongside the routine operational

forecasts. Given the experience and expertise of weather forecast centres in the

operational application of the science of weather prediction, it seems clear that

they could add considerable value to the efforts towards operational attribution

(44) — but especially if consistent models are used between the two. A final

point to consider is that weather forecast model output is already used widely
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in hazard warning systems. The findings of extreme event attribution studies

are of clear relevance to such hazard warning systems, and other users in this

space, since they can quantify how the risk of such hazards has changed due to

climate change, and how the risk might change further in the future. Using tools

that these users are already familiar with, in this case weather forecast models,

will maximize the utility and impact of further studies (84).

1.4 Conceptualising different approaches

To help illustrate some of the approaches I have discussed thus far, I now turn to

a far simpler model than weather or climate models: the Lorenz system (86). I

use a variant of this system proposed by Palmer (76), intended to explain features

of climate change projection, in which a constant forcing, f0, is included at an

angle, θ, in the x − y plane. This variant is described by three equations:

dx
dt

= σ(y − x) + f0 cos θ ,

dy
dt

= x(ρ− z) − y + f0 sin θ , and

dz
dt

= xy − βz .

These three famous equations represent a very low-order, but highly non-linear

system, and are therefore used widely to explain concepts in weather forecasting,

data assimilation and attribution (35, 98, 99). I shall use this system to conceptu-

alise the probabilistic, storyline and forecast-based approaches to attribution. The

fact that it is so non-linear and low-order means that it is an imperfect analogue to

the actual climate system, but I believe that this remains a useful demonstration.

In this Lorenz attribution experiment, I take x to be my ‘response’ (or ‘impact’)

variable, and y and z to be my ‘driving’ (or ‘dynamical’) variables. I consider

two different versions of the system: one ‘forced’ with f0 = 8 , θ = −40°; and
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one ‘unforced’ with f0 = 0. These two versions are shown in Figure 1.2. The

effect of the applied forcing is to push the body of the attractor in the positive

x direction, but at the same time to reduce the residence time of the attractor

within the right-hand (as viewed in Figure 1.2) lobe (76).

I assume that impacts occur when x > 17, which happens roughly every

1-in-20 time units in both forced and unforced versions. To explore attribution of

a specific event, I consider a particular occasion when x reached 17, x0, in the

forced system (this system state is shown in Figures 1.2 and 1.3 as a grey dot).
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Figure 1.2: Forced and unforced Lorenz Systems. The main 3-D figure shows the

attractors of forced and unforced Lorenz systems, in red and blue respectively. The

lightness of the lines indicates the z coordinate, with lighter colours corresponding to

lower values offound z. The kernel density estimates show the probability density function

(PDF) of the two states along each axis. The x and y PDFs are drawn in the x− y plane,

and the z PDF is drawn in the x− z plane. The grey dot indicates the event of interest.

The black arrow shows the direction in which the forcing is applied. This figure shows the

Lorenz system viewed from polar and azimuthal angles of 45° and -45° respectively.

A probabilistic approach to attribution would aim to use the full attractor of
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each version to determine the change in probability of this event. In the Lorenz

system, I can do this easily: I run each version of the system for a sufficiently

long time to ensure ergodicity (here 10 million time units, 99), and then compare

the exceedance probability of the event threshold in each by counting the number

of time intervals of length one time unit where x exceeds x0 at any point. In

the forced case, the probability is 0.053; and is 0.049 in the unforced case.

Hence, such an event is 8% more likely to occur in the forced system than the

unforced. However, unlike in the case of the Lorenz system, we do not have

perfect models of the climate system. Errors in climate models could result in

errors in attribution statements as discussed earlier. This could be demonstrated

by including an error term in the angle of forcing applied to the system. Such

an error could significantly change both the attractor of the forced system, and

the quantitative attribution result (76).

I might next consider a storyline approach to account for such errors. I begin

by finding analogues of the event within the full attractors in terms of the dynamical

variables y and z (with their closeness measured using Eucliean distance). Taking

the nearest 10 analogues in the forced and unforced systems, I find that the

deterministic attributable response of the system — the quantitative storyline

attribution — is that the forcing has caused the intensity of the event to increase

by 0.5 units, shown in Figure 1.3. That is, without the forcing, such an event would

be 0.5 impact units lower. Previous storyline attribution studies have typically

stopped here (82 , 83, 100). However, this does not tell us anything about how

much more likely such an event is in the forced system. One way I could do this

would be to draw many more analogues from each system such that I build up a

true picture of the conditional density of each attractor in the vicinity of the event.

This procedure concludes that the forcing has increased the probability of the

event by a factor of over 3 — shown as the lead=0 forecast result in Figure 1.3.

The issue with this is that although it neatly estimates the deterministic impact of
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the forcing, it is unable to account for the reduction in residence time in the right

lobe also caused by the forcing, and therefore overestimates the change in risk.

Finally, I explore a forecast-based approach. To generate each forecast, I

move back from the event along the forced system for a chosen lead time. Using

the location of the system at that lead before the event, I randomly generate

100 analogues of both the forced and unforced systems about it. I then use

each analogue as the initial condition of a forecast ensemble member (some

of these initial conditions are shown as coloured dots in the top right panel of

Figure 1.3). This method ensures that the forecasts remain on the true attractor

of each system, which would not necessarily be the case for other methods of

generating initial conditions, such as random perturbations (99). Once these

ensembles are integrated out for a sufficient time to actually be able to ‘forecast’

the event (just longer than the lead time) I can then use them to determine the

probability of observing x > x0. By comparing this forecasted probability in each

version of the system, I obtain the attributable change in probability. I do this for

a number of different leads, with the resulting attributable changes in probability

shown in the bottom right panel of Figure 1.3. This shows that for very short

leads, large changes in probability are found. This is because for these short

leads, the framing is essentially identical to a storyline approach — very tightly

conditioned on the features of the event — and is not able to include the impact of

the forced reduction in residence time in the right lobe. However, in the forecast-

based paradigm, I can then step back and consider longer lead times which

allow for such ‘dynamic’ responses to be accounted for. This is shown by the

stabilisation of the attributable change in probability for leads > 1 time unit. In

this way, by stepping back through lead times, the forecast-based approach is

able to synthesise the storyline and probabilistic frameworks.

The Lorenz system is an imperfect analogy of reality, but I hope that this

example has nonetheless helped to both clarify what each approach to attribution
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Figure 1.3: Storyline and forecast-based attribution in the Lorenz system. Top left:

analogues of the event and attributable storyline forced response. Top right: Forecast

initialised at a lead of 1 time unit. The coloured dots indicate the initial conditions of

the individual ensemble members shown. Bottom left: PDFs of forced and unforced

forecasts at a lead of 1 time unit. Bottom right: attributable increase in probability as

a function of forecast lead. The dashed line indicates the ‘true’ change in probability

computed using the full forced and unforced attractors, and shading indicates a 17-83 %

confidence interval computed from the 100-member forecast ensemble.

aims to determine, and demonstrate why a forecast-based approach may be

desirable. One key limitation of the Lorenz system is that it cannot demonstrate a

particular advantage of the storyline and forecast-based approaches: their ability

to claim attribution of an individual event with specific characteristics. The Lorenz

system is too low order to be able to distinguish between different ‘impact events’.

It is possible that a more complex system (yet still simpler than the weather on

Earth, e.g. 101) would be able to demonstrate the features of each approach
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even more accurately, but thinking about Lorenz (86) remains ever helpful.

1.5 The meteorology of heatwaves

Thus far, I have discussed attribution of extreme weather in a general context —

and the ideas and approaches above can be applied to any kind of extreme event.

However, much of this thesis concerns heatwaves. There are several reasons

for this. Firstly, heatwaves can have severe and wide-ranging socioeconomic

and ecological impacts (102–105). Their broad response to climate change, and

the underlying physical basis is well understood. Heatwaves have been the most

common class of extreme weather event analysed in past attribution studies,

which provides an extensive collection of literature for comparison over the course

of this thesis (106). Due to the focus on heatwaves here, in this section I will

review the typical meteorology of heatwaves, and the physical basis for their

expected response to climate change. I will arrange this review in approximate

order of proximity (starting with planetary- and synoptic-scale drivers, and ending

at the mesoscale), and focus on the meteorology of mid-latitude heatwaves, since

this is where all the case studies covered in this thesis occurred.

I will begin by discussing features that would be classed as ‘dynamical’ drivers

of heatwaves. One widely acknowledged feature is atmospheric blocking (107 ,

108). Blocking systems cover a wide range of atmospheric structures that are

characterised by their persistence and stationarity. Although there is no unique

accepted definition of a block, a rapid change from zonal to meridional tropospheric

flow would be considered essential by many. In summer, over the regions where

blocking generally occurs, zonal flow brings cooler oceanic air, and its interruption

therefore leads to increased temperatures. Blocks often feature large anticyclonic

anomalies, which can lead to subsidence under high pressure, adiabatically

heating air as it falls in a so-called ‘heat dome’. Anticyclonic anomalies also
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reduce cloud cover and precipitation, increasing temperatures in summer even

further. Their persistence enhances these effects by allowing them to build

up over one or more weeks. These processes that lead to anomalously high

summer temperatures are why blocking has been a key contributor to a number of

noteworthy heatwaves (109). Although I will not discuss the precursors of blocking

in depth, I note that some work has shown that blocks can arise as a result of

tropical-origin wave-trains (110, 111), and can be preconditioned by specific

regional SST and sea ice patterns (112 , 113). Blocking systems are projected to

gradually decrease in frequency in the mid-latitude with global warming, though

considerable uncertainty is associated with this change due to its sensitivity to

the specific method used, lack of theoretical support, and poor representation in

climate models (109). However, alongside this decrease in blocking frequency,

some work has shown that block size might be expected to increase with global

warming (114), which may change the spatio-temporal characteristics of weather

extremes associated with these systems. This increase in block size has recently

been suggested to be driven by stronger latent heating, which may also lead

to an increased average block intensity (115). Although blocking is the primary

dynamical driver of the heatwaves discussed in depth in this thesis, there are

other possible drivers of midlatitude heatwaves. One example is the European

heatwave in 2018 that is the focus of chapter 2. This heatwave was driven

by a persistent positive phase of the North Atlantic Oscillation associated with

a strengthening of the jet; and a stationary Rossby Wave-7 pattern (116), as

demonstrated by Drouard et al. (117 ).

Next, I shall review how synoptic-scale heat is actually generated from a

physical, rather than a meteorological perspective. I shall examine three different

processes by which heating occurs: advective, adiabatic and diabatic. Although

these are clearly not entirely distinct in the atmosphere, I believe that treating each

of these processes in turn will aid the clarity of this discussion. Advective heating
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occurs when regional temperatures increase as a result of warm air transport

into the region. In the mid-latitudes, this warmer air is typically transported

from the tropics. Advective heating is dynamical in origin, and may arise as

a result of a ‘ridged’ tropospheric flow, as was the case in the exceptionally

warm February temperatures observed over the UK in February 2019 (118,

119). Adiabatic heating occurs when an air mass descends, compressing as the

pressure increases, and thereby increasing its internal energy and temperature.

This is the type of heating directly associated with anticyclonic blocking systems

(or ‘heat domes’), in which high pressure causes air parcels to subside, increasing

their temperature as they approach the surface. Diabatic heating is a broad

class of many relevant processes, including condensational (latent) heating and

radiative heating from absorption of infrared light, primarily by atmospheric water

vapour, carbon dioxide (CO2) and ozone. Rather than focussing on the broad

atmospheric response to GHG emissions that arises as a result of these processes,

which has been well-understood for a long time (1), here I shall briefly discuss

feedbacks arising from these processes that may enhance heat extremes in

particular due to human influence on the climate. Under normal meteorological

conditions, the well-understood increase in atmospheric water vapour with global

warming (120) leads to increased latent heating and may change regional patterns

of cloud cover. However, under sufficiently anticyclonic conditions (for example in

a ‘heat dome’) that inhibit condensation, an increase in water vapour will instead

increase diabatic heating, thus increasing the moisture carring capacity of the

local atmosphere, and potentially resulting in further radiative heating, feeding

back into the intensity of the heat dome. Although Steinfeld et al. (115) showed

that such moist processes only lead to modest changes in average block size

and intensity, it is possible that such a feedback could enhance the most intense

(and therefore potentially impactful) blocks by more than the average.

Finally, I consider meso- and local scale meteorological processes that control
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the intensity of heat extremes. As mentioned above, the anticyclonic systems

often associated with heat extremes result in low cloud cover, due to the lack of

condensation in subsiding air. This low cloud cover results in increased solar

radiation at and near the surface. This increase in radiation results in diabatic

heating, enhancing the impact of the (adiabatic) heating through subsidence. One

way in which this radiative heating can be moderated is through the presence of

soil moisture, which results in latent heating, thus reducing the energy transfer

contributing directly to increased air temperatures. As a result, soil-moisture

feedbacks are a key physical component of heat extremes that have been studied

extensively (57–59, 121–125). Vogel et al. (123) partitioned the effect of soil

moisture into soil-temperature, soil-precipitation and soil-radiation feedbacks

to allow for a clear explanation of the underlying processes involved. Soil-

temperature feedbacks occur when dry soils lead to reduced latent heating,

thus increasing temperatures and latex heat flux, further drying out the soil. Soil-

precipitation feedbacks dampen the temperature response when an increase

in soil moisture leads to increased latex heat flux, resulting in increased cloud

cover and precipitation (126), thus further increasing soil moisture. Soil-radiation

feedbacks are similar, in that reduced soil moisture results in reduced latent heat

flux, thus reducing cloud cover and enhancing incoming solar radiation, thus

further drying the soil. Fischer et al. (57 ) additionally demonstrated for the case

of the 2003 heatwave over Central Europe that reduced soil moisture enhanced

positive geopotential height anomalies, thus increasing the persistence and

strength of the associated anticyclonic circulation, further reducing soil moisture.

Human influence is understood to be reducing soil moisture on a global scale

(15), though the confidence in this impact (and its sign) varies considerably

across regions. Marvel et al. (127 ) used detection and attribution techniques

to find an emerging GHG signal forcing the drying trends over North America

and Eurasia. Confident detection and attribution of these signals is impacted
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by the influence of anthropogenic aerosol emissions on regional hydroclimate,

particularly during the mid to late twentieth century. Aerosol influence on such

trends has a distinct spatial pattern that masks the GHG pattern and associated

signal (14). Overall, however, reductions in soil moisture due to anthropogenic

GHG emission are expected to enhance human influence on extreme heatwaves

through the mechanisms discussed here.

1.6 What to expect in this thesis

This chapter has provided a review of the attribution of extreme weather events

to human influence on the climate. I have introduced the question that this

field aims to answer, motivated why it is an important question, and discussed

several approaches to answering it. I finally provided an overview of the physical

processes involved in generating the kinds of heatwaves that will be the focus

of much of this thesis. This final section will summarise the content within the

remaining chapters. One consistent feature of the science chapters (2–5) is

that they begin with a ‘Chapter open’ and end with a ‘Chapter close’ section,

written after I had completed them all. In the ‘Chapter open’ sections I discuss

the aims of the chapter within the wider context of my whole PhD project, and

what the intended outcome of the chapter is. In the ‘Chapter close’ sections

I consider how the outcome of the chapter fits within the whole project, what

questions are still outstanding following the chapter, and how these questions

influence the rest of the thesis.

In chapter 2, I carry out a conventional probabilistic attribution study, following

the methods I have described above. This analysis uses the hot summer over

Europe in 2018 as its case study. The original motivation for this chapter was

that following the event, groups from the UKMO and WWA released attribution

statements, coming to apparently conflicting results that differed by an order of
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magnitude. This study aimed to resolve the discrepancies between these two

estimates by examining the influence of how the event is defined, in terms of

its temporal and spatial scale, upon the quantitative attribution results. Within

the context of this thesis, this chapter provides a more in-depth introduction to

the techniques and presentation of results within the conventional probabilistic

attribution framework.

Chapter 3 introduces the approach that is the primary outcome of this thesis:

extreme weather attribution using counterfactual weather forecasts of specific

events. In this chapter, I look at the case study of the exceptional warmth

experienced over much of Europe at the end of February 2019, and confine

the scope of the attribution to examining the direct radiative influence of increased

CO2 levels over pre-industrial levels. I start from the successful operational

ECMWF forecast ensemble system, re-run the ensemble with pre-industrial CO2

levels, and look at the impact this boundary condition perturbation has on the

extreme heat. With this partial attribution, I show how a forecast-based approach

might be carried out in practice. I discuss how our forecast-based approach differs

in terms of the question it is answering to conventional probabilistic approaches,

alongside some of the arguments for and against using such an approach.

In chapter 4, I develop the partial attribution study in chapter 3 by additionally

taking anthropogenic influence on ocean heat content into account. I do this by

perturbing the initial ocean (and sea-ice) state of the weather model in such as

way as to remove the human fingerprint from the forecast initial conditions. By

perturbing both the initial and boundary conditions of the weather model, I can

more completely estimate the human contribution to an individual weather event.

The event that I study in this chapter is the 2021 Pacific Northwest Heatwave,

an unprecedented extreme that generated significant attention from the media

when it occurred. One reason why this event is of particular interest is because

the conventional probabilistic approaches appear to break down when faced with
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such an exceptional outlier in the context of the historical record. I show that

the forecast-based approach taken here represents a robust and appropriate

alternative to these conventional approaches.

The final science chapter, 5, focuses on projections of future climate, a

field which has strong links to attribution. However, unlike the other chapters

in which I attempt to increase the specificity of attribution frameworks, in this

chapter I explore questions over how to estimate and sample the full space of

uncertainty surrounding future weather extremes. I use a novel approach to

generate very large ensembles of extreme winters in an atmosphere-only model,

comparing these ensembles to relatively smaller ensembles from a coupled model.

I show that this novel approach represents a very efficient methodology for the

provision of very extreme winters over the UK, which could be of considerable

value for climate change adaptation planning. I consider the question of how

the forecast-based approaches to attribution could be appropriated to provide

physically-consistent samples of specific high-impact extreme weather events

as if they occurred in a future climate. This forecast-based approach to climate

projections would provide very specific information, in contrast to the general

exploration of uncertainty allowed by the work in this chapter. Both approaches

could, however, provide exceptionally useful information surrounding the risk

from future extreme weather events.

The closing chapter provides a discussion of this thesis. Beginning with a

summary of the science I have presented, I move onto placing it within the body

of previous work on the subject and assessing its novelty and utility. I consider

some of the limitations within the studies and approaches taken here, and suggest

ways in which they might be overcome with future work. There are a number of

ways in which this work could progress further in the future, or could be used

outside of attribution. I consider these possible directions and applications before

giving my concluding thoughts.
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There is new and stronger evidence that most of

the warming observed over the last 50 years is at-

tributable to human activities.

— IPCC, TAR, 2001

2
Conventional probabilistic

attribution

Here I present a probabilistic extreme event attribution of the 2018 European

heatwave. Whilst demonstrating the methodologies behind this framework, I

examine how one particular aspect of probabilistic event attribution— the definition

of the event — projects strongly onto the quantitative results. In the closing

remarks, I reflect on potential issues with the approach taken within the chapter,

and suggest ways in which these could be overcome.
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2.1 Chapter open

The aim of this chapter, both in this thesis and at the time I started the work, is

to provide a practical example of how probabilistic extreme event attribution is

typically carried out. At the time, the 2018 European heatwave was a clear case

study to pick — it had not only been responsible for very significant damages,

but had already been analysed by two separate attribution teams, who came to

seemingly quite different conclusions. One group at the UK Met Office estimated

that the heatwave had been made 30 times more likely, while the other group, the

World Weather Attribution project, stated that it had been made 2–5 times more

likely due to human influence on the climate. These two numbers are an order

of magnitude apart, and I aimed to determine why they were so different. Whilst

resolving this discrepancy was the main research question, the other clear goal

was to provide me with some experience in actually carrying out an attribution

study, and therefore identify the many gaps in my knowledge that existed at the

time. I collaborated with several researchers from the WWA to ensure that the

methods I was using were consistent with those that they had used themselves.

2.2 Abstract

We demonstrate that, in attribution studies, events defined over longer time scales

generally produce higher probability ratios due to lower interannual variability,

reconciling seemingly inconsistent attribution results of Europe’s 2018 summer

heatwaves in reported studies.
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2.3 The 2018 heatwave in Europe

The summer of 2018 was extremely warm in parts of Europe, particularly Scan-

dinavia, the Iberian Peninsula, and Central Europe, with a range of all-time

temperature records set across the continent (128, 129). Impacts were felt across

Europe, with wildfires burning in Sweden (130, 131), heatstroke deaths in Spain

(132), and widespread drought (133). During the summer, the WWA released an

analysis of the heat spell (134) based on observations/forecasts and models in

specific locations (Dublin, Ireland; De Bilt, Netherlands; Copenhagen, Denmark;

Oslo, Norway; Linkoping, Sweden; Sodankyla, Finland; Jokionen, Finland), which

concluded that the increase in likelihood due to human induced climate change

was at least 2 to 5 times. In December, the UKMO stated that they found the

2018 U.K. summer temperatures were made 30 times more likely (135, 136).

These two estimates appear to quantitatively disagree; however, we show they

can be reconciled by considering the effect of using different spatial domains and

temporal scales in the event definition. We also demonstrate that prescribed SST

model simulations can under-represent the variability of temperature extremes,

especially near the coast, with implications for any derived attribution results.

2.3.1 Defining the event

We consider various temperature-based event definitions to demonstrate the

impact of this choice in attribution assessments, and assess to what extent

human influence affected the seasonal and peak magnitudes of the 2018 summer

heat event on a range of spatial scales. The metric we use is the annual maximum

of the 1-, 10-, and 90- day running mean of daily mean 2-m temperature (hereafter

TM1x, TM10x, and TM90x respectively). We analyse two spatial scales: model

grid box and regional. For regional event definitions, the spatial mean is calculated

Typeset on January 5, 2023



2. Conventional probabilistic attribution 41

TM1x TM10x

TM90x

-6 -4 -2 0 2 4 6

Temperature anomaly (°C)

Figure 2.1: The 2018 heatwave in Europe: observed mean temperature anomalies

over a range of timescales. Shading indicates mean temperature anomalies for the

the different temporal-scale heatwave metrics used. Black contours indicate z-scores of

the 2018 heatwave for the three metrics based on detrended historical data from E-OBS.

The contours indicate scores of 1-, 2-, and 3-σ, in order of increasing thickness.

before the annual maximum. Regional domains are taken from Christensen and

Christensen (137 ). Figure 2.1 shows the 2018 anomaly field for each of these

metrics. In their study, the WWA used the annual maxima of 3-day mean daily

maximum temperatures at specific grid points for its connection to local health

effects (71), whereas the UKMO used the JJA mean temperature over the entire

UK in order to answer the question of how anthropogenic forcings have affected

the likelihood of U.K. summer seasons as warm as 2018. The same justifications

can be used here, although we add that different heat event time scales are

important to different groups of people, and as such using several temporal

definitions may increase interest in heat event attribution studies. However, we
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recognize that other definitions than those used here may be more relevant

to some impacts observed (such as defining the event in the context of the

atmospheric flow pattern and drought that accompanied the heat), and other lines

of reasoning for selecting one particular event definition exist (138).

2.4 Materials & methods

Model simulations & validation

Weprimarily use three sets of simulations from the UKMOHadley Centre HadGEM3-

A global atmospheric model (139, 140). These are a 15-member historical

ensemble (1960–2013; Historical), and 525-member factual (ACT, referred to as

HistoricalExt by Ciavarella et al.) and counterfactual (a “natural” world without

anthropogenic forcings; NAT, referred to as HistoricalNatExt by Ciavarella et al.)

ensembles of 2018. Historical and ACT are forced by observed SSTs and sea

ice concentrations (SICs) from HadISST (141). NAT is forced by naturalised SST

and SICs estimated by subtracting the multi-model mean difference between the

CMIP5 ‘historical’ and ‘historicalNat’ experiments (142), and run with pre-industrial

greenhouse gas concentrations. For a complete description of these ensembles,

see Ciavarella et al. (140). We compare results from these factual-counterfactual

simulations with those from a trend-based analysis of the 15-member HadGEM3-A

Historical ensemble, a 10-member ensemble from EURO-CORDEX (1971–2018;

143–145) and a 16-member ensemble from the RACMO regional downscaling of

EC-EARTH 2.3 (1950–2018; 146, 147 ). The EURO-CORDEX ensemble used

here is bias-corrected using the cumulative distribution function (CDF) transform.

Both the EURO-CORDEX and RACMO ensembles follow the CMIP5 ‘historical’

scenario to 2005 and the RCP4.5 scenario thereafter (142 , 148). Observations

are taken from E-OBS (1950–2018; 149) throughout. Initially, we performed
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our analysis with the weather@home HadRM3P European-25 km setup (150)

but found that this model overestimates the variability over all Europe for daily

through seasonal-scale event statistics, and so it was omitted.

Attribution methodology

Estimating the event threshold

We first use historical data to estimate the return time of the 2018 event, and the

corresponding temperature threshold in each model. We start by calculating the

return period for the 2018 event in E-OBS. Since the distribution of temperature

extremes changes as the climate changes, to account for the non-stationarity of the

time series we remove the attributable trend by regressing onto the anthropogenic

component of GMST (the anthropogenic warming index, based on HadCRUT5; 67 ,

151, 152). We then fit extreme value (EV) distribution parameters to this detrended

E-OBS time series, and use these parameters to calculate the estimated return

period of the 2018 event. We then find the temperature threshold in the model

climatology that corresponds to this return period. We do this by fitting EV

parameters to a detrended (by regressing onto the anthropogenic warming index)

climatological ensemble for each model. For HadGEM3-A, the climatology is

Historical plus 15 randomly sampled members of ACT; for RACMO and EURO-

CORDEX, the climatology is taken as the entire set of simulations described

above. The calculation of model-specific climatological temperature thresholds

from the E-OBS temperature threshold is illustrated for the British Isles region in

Figure 2.2. Using estimated event probabilities rather than observed magnitudes

to define the event constitutes a quantile bias correction (153), accounting for

model biases in the mean and variability of the temperatures simulated.

Typeset on January 5, 2023



44 2.4. Materials & methods

-2 0 2 4 6
0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty

E-OBS

-2 0 2 4 6

HadGEM3-A
ECDF
 
2018 threshold
corresponding quantile
 
GEV fit median
 5 - 95 %
15 - 85 %
25 - 75 %
35 - 65 %
45 - 55 %

Temperature anomaly (°C)

Figure 2.2: Calculating the heatwave threshold in HadGEM3-A from observations.

The heatwave metric used here for illustration is TM1x for the BI region. Solid black

lines indicate empirical CDFs. Solid grey lines indicate generalised extreme value (GEV)

distributions fit to the data, with grey shading indicating confidence intervals (CIs) of the

fit. The dotted black line indicates the temperature observed during the 2018 heatwave

in E-OBS. Dotted grey lines indicate the best-estimate quantile corresponding to the

2018 event in E-OBS based on the GEV fit, and the temperature of that quantile in the

HadGEM3-A historical climatology.

Counterfactual attribution

For the main analysis, which we term “counterfactual” attribution (25), we estimate

the probability (P) of exceeding this climatological temperature threshold in

the ACT and NAT ensembles. We do this by fitting EV parameters to each

ensemble, and using them to calculate PACT and PNAT. The estimate ACT and

NAT distributions are shown for each metric in Figure 2.3. We express our results

as the probability ratio, PR = PACT/PNAT, representing the fractional change in

probability of the 2018 event in the factual compared to the counterfactual world.

Trend-based attribution

We support the counterfactual attribution with a trend-based analysis (154) of

E-OBS and all the model ensembles used. This trend-based analysis is based on

the climatology alone, and does not require factual and counterfactual simulations.

We start with the EV parameters fit to the detrended climatology, and then use

Typeset on January 5, 2023



2. Conventional probabilistic attribution 45

the estimated climate change trend between 1900 and 2018 to shift the location

of the EV distribution. This shifted distribution then represents the counterfactual

distribution (analogous to NAT), and the original distribution represents the factual

distribution (analogous to ACT), from which we can calculate PRs.

Statistical methods

We fit EV parameters using the method of L-Moments (155), modelling TM1x

and TM10x using the generalized extreme value (GEV) distribution, and TM90x

using the generalized logistic distribution. Uncertainties are calculated using a

10,000 resample non-parametric bootstrap throughout.

2.5 Results

Extreme daily heat events, measured by TM1x, are distributed heterogeneously

throughout Europe. This is paralleled in the PRs seen in Figure 2.4, with large

areas of the Iberian Peninsula, the Netherlands, and Scandinavia experiencing

events that were highly unlikely in a climate without anthropogenic influence.

A similar result is found on the regional scale in Figure 2.5 with Scandinavia

and the Iberian Peninsula respectively experiencing 1-in-150 [25–25,000]† and

1-in-30 [9–550] year events in the current climate that were highly unlikely in

the natural climate simulated in NAT. The remaining regions recorded maximum

daily temperatures expected to be repeated within 4 years. The PRs for regional

domains are typically larger than single gridboxes within them, though some

regions contain clusters of extremely high PRs. This result is consistent with Uhe

et al. (2016) and Angélil et al. (2018), who showed that increasing the spatial

scale over which the event is defined tends to increase the PR.

†Numbers in brackets [] represent a 90% CI throughout this chapter.
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Figure 2.3: Factual and counterfactual PDFs of the 2018 heatwave defined over

three temporal scales. The heatwave metric used is given in the title of each panel.

Solid red and blue lines indicate best-estimate GEV distributions fit to HadGEM3-A 2018

ACT and NAT ensembles respectively. Dotted grey line indicates 2018 event threshold

defined using HadGEM3-A and E-OBS climatology (see Figure 2.2). Shading illustrates

CIs.

Extreme 10-day heat events, TM10x, were also widespread in Europe, with the

most extreme occurring in Scandinavia (Figure 2.1). Regionally, the PRs become

more uniform (Figure 2.5), although Scandinavia and the Iberian Peninsula still

have very high best-estimate PRs of 800 [20–infinite] and 85 [25–40,000] respec-

tively.

The PR map for season-long heat events measured by TM90x is more uniform

throughout Europe (Figure 2.4). Scandinavia, the British Isles, France, and central

and Eastern Europe all experienced on the order of 1-in-10 year events. The

corresponding best-estimate PRs are between 10 and 100 for all regions (Figure

2.5), including those with lower return periods.
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Figure 2.4: Maps of the estimated change in probability of the 2018 heatwave due

to anthropogenic influence on the climate. The heatwave metric used is given in the

title of each panel. Shading illustrates PR of 2018 event at each gridpoint computed

using HadGEM3-A ACT and NAT ensembles.

A trend-based analysis yields similar results, with PRs for the British Isles

region shown in Figure 2.6, though we note that for HadGEM-3A this results in

generally higher PRs than the corresponding counterfactual analysis, due to the

attributable anthropogenic trend in the climatology being greater than the mean

difference between the ACT and NAT ensembles. For the vast majority of the

regions and metrics analysed here, the trend-based observational, trend-based

model, and counterfactual model estimates of the return period are consistent

with one another, and Figure 2.5 is a good representation of the synthesis of these

different approaches and data sources. However, there are a few regions with

notable discrepancies. The uncertainty in the E-OBS observed Scandinavia region

TM1x trend is large enough that a 90% CI is not able to rule out a negative trend.
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Hence, the corresponding PR CI includes values of less than 1 (i.e. that TM1x

events at least as hot as the 2018 event have been made less likely by climate

change). This interval is large enough that it does still overlap with all the model-

derived estimates, all of which suggest that the PR is very likely greater than 70.

This very large interval may arise due to natural variability affecting the relatively

small sample size. Synthesizing these strands of information, we suggest that

such daily extreme heat events over Scandinavia have been made more likely by

climate change, but we are cautious about drawing very firm conclusions. The

other clear discrepancy is for the TM90x metric British Isles results, shown in

Figure 2.6. Despite good agreement between all other approaches and sources,

the trend-based HadGEM3-A estimate is an order of magnitude higher and does

not overlap with the others. This appears to be due to the variability of British

Isles temperatures on this ~seasonal timescale being underestimated by this

model, even though the estimated trend closely matches the other models and

observations. We discuss this further below.

The PR increases with the event statistic timescale for themajority of grid points

and regions, demonstrated in Figures 2.4 and 2.5. Figure 2.3 illustrates the cause

using the British Isles region: as the timescale increases, the variance in the event

metric decreases, while the mean shift between the factual and counterfactual

distributions remains comparable. The similarity in attributed anthropogenic trend

for the three time scales is also true in the observations and other models. The

decrease in variance usually results in higher PRs, given a particular event return

time, for the longer time scales. There are exceptions due to the bounded upper

tail of a GEV distribution with a negative shape parameter, resulting in the very

high estimated PRs for TM1x in Scandinavia, the Iberian Peninsula, and the

Netherlands (Figure 2.5). Now focussing on the British Isles region, Figure 2.3

also shows another reason why the TM90x metric PRs are much higher than the

TM10x or TM1x results: in addition to the decreased variance in the TM90x metric,
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Figure 2.5: Estimated changes in probability of the 2018 heatwave defined using

regional mean temperatures. Colour indicates heatwave metric. Dots indicate central

PR estimate and bars indicate a 90% CI.

the 2018 event was more unusual when measured with this metric (a return period

of 10.3 [5.7–20] years) compared to the two shorter timescale metrics (return

periods of 2.5 [1.7–3.8] and 3.6 [2.4–6.0] for TM10x and TM1x respectively).

These two factors (reduced variance and rarer event) result in best-estimate PRs

of 3.7 [2.9–4.9] for TM1x and 29 [17–57] for TM90x. We therefore suggest that

changes in the variance of the event metric as the time scales used changes

largely reconciles the differences between the “2 to 5” and “30” times increases

in likelihood found by the WWA and UKMO reports, with other methodological

factors, such as the spatial scale used in the event definition, playing a more

minor role as we have demonstrated for the British Isles.

As mentioned above, the trend-based HadGEM3-A analysis appears to over-

estimate the PR of the 2018 event when considering the other approaches taken

here (Figure 2.6). This is due to an important deficiency in the model: the model
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Figure 2.6: Estimated changes in probability of the 2018 British Isles heatwave

across a range of observations and model simulations. Here, PRs are estimated

using a trend-based analysis. Colour indicates data source. Dots indicate central PR

estimate and bars indicate a 90% CI.

distributions are narrower than the observed distributions for this heatwave metric,

meaning the model has lower variability in temperatures on seasonal timescales

than the real world. This reduced variance has a significant impact on attribution

results (62) andmeans that the trend-based PRs for this model and over the British

Isles region presented here, especially for TM90x, are likely to be overestimated.

Underrepresented variability often occurs in prescribed-SST models (156, 157 )

and is present in HadGEM-3A for many coastal gridboxes in Europe. Figure 2.7

shows the power spectrum of JJA summer temperatures over the British Isles,

indicating that HadGEM3-A has broadly similar spectral characteristics to E-OBS,

but under-represents the intraseasonal 2 m temperature variability at almost all

frequencies, which will likely result in overestimated PRs. Power spectra for

other model ensembles are shown for comparison, demonstrating that only the
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fully bias-corrected EURO-CORDEX ensemble has variability characteristics and

magnitude that closely match the observations.
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Figure 2.7: Historical power spectrum of summer daily mean temperatures over the

British Isles across a range of observations and model simulations. Power spectra

are estimated as periodograms averaged over all historical years available for each data

source, expressed as a fraction of the E-OBS power at each frequency. Colour indicates

data source. Thick lines show ensemble mean power for each source. Thin lines show

individual ensemble members for each source.

2.6 Discussion

Our analysis highlights a key property of extreme weather attribution: the variance

of the event definition used, both in terms of the statistic itself and its representation

within any models used. The use of longer temporal event scales in general

increases both the spatial uniformity and magnitude of the PRs found, consistent

with Kirchmeier‐Young et al. (158), due to a decrease in variance compared to

shorter scales. The difference in temporal scale between two reports concerning
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the 2018 summer heat is sufficient to explain the large discrepancy in attribution

result between them. We find that several European regions experienced season-

long heat events with a present-day return period greater than 10 years. The

present-day likelihood of such events occurring is approximately 10 to 100 times

greater than a “natural” climate without human influence. The attribution results

also show that the extreme daily temperatures experienced in parts of Scandinavia,

the Netherlands, and the Iberian Peninsula would have been exceptionally unlikely

without anthropogenic warming. The prescribed-SST model used primarily here

tends to underestimate the variability of temperature extremes near the coast,

which may lead to the attribution results overstating the increase in likelihood of

such extremes due to anthropogenic climate change (62). We aim to properly

quantify the impact of the underrepresented variability in further work. Although

here we have used an unconditional temperature definition for consistency with

the studies we aimed to reconcile, we plan to further investigate the effect of

including both the atmospheric flow context and other impact-related variables

such as precipitation in the event definition, and address issues models might

have with realistically simulating the physical drivers of heatwaves.

2.7 Chapter close

At the start of this chapter, I set out that I had two main goals for the study: to

understand how two seemingly contradictory attribution results arose; and to gain

practical experience in carrying out probabilistic attribution analyses myself. I

believe that the contents of this chapter demonstrate that I achieved the first, and

(hopefully) that the contents of this thesis demonstrate that I achieved the second

to the level required by my work. However, although both of these outcomes

were realised, this study left me with a number of outstanding questions. Can we

claim to be attributing a specific event if we simply consider all weather events
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that happened to be the hottest during a particular year, without considering

anything else about the meteorology? Is a purely statistical model validation

sufficient? How important is ocean-atmosphere coupling? How do you decide

how to define your event given that this definition can have huge implications

for the quantitative result? Should we include more information about the event

in the event definition (such as the atmospheric flow, or other variables like soil

moisture), in order to provide a more event-specific analysis?

Several of these questions are highly related (especially those concerning

event specificity and model validation). Following this work, I spent some time

looking into the biases in variability in the models I had used. Although my

work into these biases did not lead to any concrete and publishable results, I

have attempted to address a number of the other questions raised here in the

remainder of the thesis. In particular, the questions surrounding event specificity

might be answered by using conditioned model simulations. This conditioning

could be applied in many different ways, but one particularly attractive one would

be to use successful weather forecasts. In this way you could reasonably claim

to be attributing the specific event in question, but also have a much higher

degree of confidence that the model being used was actually able to simulate

such an event in the way that it had unfolded in reality. As a result, much of

the rest of this thesis, and its contribution to the field, is concerned with the

idea of forecast-based attribution.
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Advances since the TAR show that discernible hu-

man influences extend beyond average temperature

to other aspects of climate.

— IPCC, AR4, 2007

3
Attribution with perturbed initial

condition forecasts

This chapter contains much of the conceptual description of, and motivation for,

forecast-based attribution. Using the well-predicted February 2019 heatwave as

a case study, I carry out forecasts with the operational medium-range ECMWF

model in which I have instantaneously perturbed the CO2 concentration at initiali-

sation. These perturbed forecasts allow me to estimate the direct contribution of

diabatic heating due to CO2 to the heatwave. This partial attribution provides a

proof-of-concept of the forecast-based approach, and I close with a discussion

of how I could perform a more complete estimate of anthropogenic influence

on a specific extreme event in following work.

Author contributions: This chapter is based on the following publication *

Leach, N. J., Weisheimer, A., Allen, M. R., & Palmer, T. (2021). Forecast-based attribu-

tion of a winter heatwave within the limit of predictability. Proceedings of the National

Academy of Sciences, 118(49). https://doi.org/10.1073/pnas.2112087118

*with the author contributing as follows. Conceptualisation, Data curation, Formal analysis,

Investigation, Methodology, Resources, Visualisation, Writing – original draft and Writing —

Review & Editing.
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3.1 Chapter open

Just after the exceptionally warm period in February 2019 that is the subject of

this chapter, my co-authors and I discussed this extreme event. Two features

were particularly noteworthy: it appeared to be a particularly radiatively driven

heat event; and it had been forecast exceptionally well at least a week in advance.

Although at this point we had already discussed performing counterfactual fore-

casts using perturbed initial conditions, we hadn’t yet worked out how we would

actually achieve this in practice, and it seemed a long way off. Because of this,

and the apparent radiative nature of the event, we wondered if we could start off

by simply changing the CO2 concentrations in the model — and leaving everything

else the same. Although this would only represent a very partial attribution, to the

direct radiative effect of increased CO2 concentrations over pre-industrial levels,

Baker et al. (159) had recently published a study that suggested we might still

find that this direct effect would be sufficient to notice a difference. It turned out

that changing the CO2 concentrations in the model was relatively straightforward,

and after waiting some time for computing resource to be granted, we were able

to perform these perturbed-CO2 counterfactual forecasts. This partial attribution

would allow us to begin exploring a number of questions we had on the approach:

how would the predictability of the heatwave change when we changed the CO2

levels?; how would the attribution statements depend on lead time?; would the

direct effect of CO2 be large enough for us to even detect it? All of these questions

are relevant to not only the partial attribution presented in this chapter, but also

forecast-based attribution in general.
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3.2 Abstract

Attribution of extreme weather events has expanded rapidly as a field over

the past decade. However, deficiencies in climate model representation of

key dynamical drivers of extreme events have led to some concerns over the

robustness of climate model-based attribution studies. It has also been suggested

that the unconditioned risk-based approach to event attribution may result in

false negative results due to dynamical noise overwhelming any climate change

signal. The “storyline” attribution framework, in which the impact of climate

change on individual drivers of an extreme event is examined, aims to mitigate

these concerns. Here we propose a methodology for attribution of extreme

weather events using the operational ECMWF medium-range forecast model

that successfully predicted the event. The use of a successful forecast ensures

not only that the model is able to accurately represent the event in question,

but also that the analysis is unequivocally an attribution of this specific event,

rather than a mixture of multiple different events that share some characteristic.

Since this attribution methodology is conditioned on the component of the event

that was predictable at forecast initialisation, we show how adjusting the lead

time of the forecast can flexibly set the level of conditioning desired. This

flexible adjustment of the conditioning allows us to synthesize between a storyline

(highly conditioned) and a risk-based (relatively unconditioned) approach. We

demonstrate this forecast-based methodology through a partial attribution of

the direct radiative effect of increased CO2 concentrations on the exceptional

European winter heatwave of February 2019.
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3.3 Introduction

Attribution of extreme weather events is a relatively young field of research within

climate science. However, it has expanded rapidly from its conceptual introduction

(19) over the past twenty years; it now has an annual special issue in The Bulletin

of the American Meteorological Society (160). Extreme event attribution is of

particular importance for communicating the impacts of climate change to the

public (161, 162), since the changing frequency of extreme weather events due to

climate change is an impact that is physically experienced by society. As a result

of this rapid expansion, there now exist numerous methodologies for carrying

out an event attribution (163). Many of these rely on large ensembles of climate

model simulations, the credibility of which has been questioned by recent studies

(62 , 77 , 78). A particular issue is the dynamical response of the atmosphere to

external forcing, which is highly uncertain within these models (79). As attribution

studies try to provide quicker results, with an operational system a clear aim, it is

vital that any such system provides trustworthy results. In this study we propose a

“forecast-based” attribution methodology using medium-range weather forecasts

which could provide several key advantages over traditional climate model-based

approaches. Firstly, if an event is predictable within a forecasting system, we know

that that system is capable of accurately representing the event. Secondly, we

know that any attribution performed is unequivocally an attribution of the specific

event that occurred; unlike in unconditioned climate model simulations. Finally,

weather forecasts are run routinely by many national and research centres. The

models used are generally state-of-the-art and extensively verified. We propose

that the attribution community could and should take advantage of the massive

amount of resources that are put into these forecasts by developing methodologies

that use the same type of simulation. Ideally, the experiments required for

attribution with forecast models would be able to be run with little additional effort
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on top of the routine weather forecasts; in this way they might provide a rapid

operational attribution system. We discuss these ideas further throughout the text.

There have been several studies that propose or perform methodologies

related to the forecast-based attribution demonstrated here. Hoerling et al.

(65) used two seasonal forecast ensembles to examine the predictability of

the 2011 Texas drought/heatwave within a comprehensive attribution analysis

involving several types of climate simulation. Meredith et al. (164) used a triply

nested convection-permitting regional forecast model to investigate the role of

historical SST warming within an extreme precipitation event. They conditioned

their analysis on the large-scale dynamics of the event through nudging in the

outermost domain. More recently, Van Garderen et al. (82) employed spectrally

nudged simulations to assess the contribution of human influence on the climate

over the 20th century on the 2003 European and 2010 Russian heatwaves.

Possibly the most similar studies to the one presented here are a series of

studies by Hope and colleagues (165–167 ). They used a seasonal forecast

model to assess anthropogenic CO2 contributions to record-breaking heat and

fire weather in Australia. Two more similar studies carried out forecast-based

hurricane attribution studies (168, 169). Tropical cyclones are a natural candidate

for forecast-based methodologies due to the high model resolution required to

represent them accurately, if at all. A final distinct, but related study is Hannart et al.

(170), which proposes the use of Data Assimilation for Detection and Attribution

(DADA). They suggest that operational causal attribution statements could be

made in a computationally efficient manner using the kind of data assimilation

procedure carried out by weather centres (to initialise forecasts) to compute the

likelihood of a particular weather event under different forcings (these would be

observed and estimated pre-industrial forcings for conventional attribution). Our

forecast-based framework differs from these other studies in several regards.

Firstly, we use a state-of-the-art forecast model to perform the attribution analysis
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of the event in question; rather than to solely assess the predictability of the event.

We use free-running coupled ocean-atmosphere global integrations here, allowing

the predictable component at initialisation to dynamically condition the ensemble;

as opposed to nudging our simulations towards the dynamics of the event, using

nested regional simulations, or using the highly observationally constrained output

of data assimilation procedures. A final key difference is that here we present an

attribution of the direct radiative effect of CO2 in isolation, though we hope that

our approach could be extended in the future to provide an estimate of the full

anthropogenic contribution to extreme weather events as in these other studies.

We argue that the relative simplicity in the validation, setup and conditioning

of our simulations is desirable from an operational attribution perspective; and

flexible across many different types of extreme event.

We begin by introducing the chosen case study, the 2019 February heatwave

in Europe, describing its synoptic characteristics and formally defining the event

quantitatively. We then demonstrate the predictability of the event within the

ECMWF ensemble prediction system, showing that this operational weather

forecast was able to capture both the dynamic and thermodynamic features of the

event. In Perturbed CO2 forecasts, we outline the experiments we have performed

in order to quantitatively determine the direct CO2 contribution to the heatwave.

We then provide quantitative results from these experiments, and finally conclude

with a discussion of the strengths and potential issues of our forecast-based

attribution methodology, including our proposed directions for further work.

3.4 The 2019 February heatwave in Europe

Between the 21st and 27th February 2019, climatologically exceptional warm

temperature anomalies of 10-15 were experienced throughout Northern and

Western Europe (118), as shown in Figure 3.1A. In particular, the 25th - 27th
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February saw record-breaking temperatures measured at many weather stations

and over wide areas of Iberia, France, the British Isles, the Netherlands, Germany

and Southern Sweden, as shown in Figure 3.1C (149). Figure 3.1D, comparing the

regional mean maximum temperatures during the 2019 heatwave with timeseries

of winter mean maximum temperatures between 1950 and 2018, illustrates just

how unusual and widespread the event was. This heat was associated with a

characteristic flow pattern: a narrow titled ridge extending from north-west Africa

out to the southern tip of Scandinavia, advecting warm subtropical air north-east

(171), as shown in the geopotential height field in Figure 3.1A. This dynamical

driver was accompanied by another synoptic feature that further enhanced the

warming: widespread clear skies between the 25th – 27th, shown in Figure 3.1B.

These clear skies resulted in a widespread and persistent strong diurnal cycle,

reaching 20 in some locations. Further details of the meteorological mechanisms

and historical context of the heatwave are provided in Young and Galvin (118),

Kendon et al. (172), and Christidis and Stott (173).

To quantify the direct impact of CO2 on the heatwave in question within this

study, we need to characterise the heatwave in an ‘event definition’. The choice

of event definition is subjective but can impact on the quantitative results of an

attribution study significantly (63, 158, 174). The most remarkable feature of

the February 2019 heatwave was the maximum temperatures observed, which

peaked between the 25th and 27th for the majority of the affected area. Focusing

on this relatively short time-period ensures that the synoptic situation driving the

heat is coherent throughout the event definition window. For the spatial extent of

the event, we use the eight European sub-areas described by Christensen and

Christensen (137 ). The use of regions previously defined in the literature aims

to avoid selection bias. Our resulting event definition is as follows: the hottest

temperature observed between 2019-02-25 and 2019-02-27, then averaged over

the land points within each region (the temporal maximum is calculated before
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the spatial averaging). Although we carry out our calculations for all sub-areas,

several regions were characteristically very similar in terms of both the event itself,

and the forecasts of the event. We therefore focus on three of the eight regions:

the British Isles (BI), which experienced exceptional heat and was well predicted;

France (FR), which experienced exceptional heat but where the magnitude of

the heat was less well forecast; and the Mediterranean (MD), which experienced

well-predicted but climatologically average heat.
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Figure 3.1: The 2019 February heatwave in Europe: synoptic characteristics &

historical context. A, maximum temperature anomaly in E-OBS with overlying contours

of mean Z500 anomaly from ERA5 (88) over 25-27 February 2019. B, mean total cloud

cover with overlying contours of mean sea level pressure (MSLP) anomaly averaged

over 25-27 February 2019. C, rank of the maximum temperature in E-OBS over 25-27

February 2019 out of all winter temperature maxima since 1950 and light-blue scatterplot

of 216 HadISD stations (with > 30 winters of measurements) which recorded their highest

observed value over the same three days (175–178). D, historical winter maximum

regional mean daily maximum temperatures in E-OBS. Solid purple line shows timeseries

of winter maxima for 1950-2018; dashed pink line indicates maximum value observed

over the 25-27 February 2019. Regions are as Christensen and Christensen (137 ).
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3.5 Materials & methods

The ECMWF IFS

In this study, we use the IFS model cycle CY45R1, the operational cycle at the

time of the event. The 51-member ensemble prediction system comprises a

91-layer, TCo639 resolution atmospheric model coupled to the 75-level, 0.25°

resolution Nucleus for European Modelling of the Ocean v3.4 (179). Once the

model integration reaches the extended range (day 15 onward), the atmospheric

model resolution is reduced to TCo319.

The IFS model climatology We define the IFS model climatology, used

to compute model anomalies and the continuous ranked probability skill score,

in an identical manner as is done operationally (for example, to calculate the

Extreme Forecast Index product 180). This climatology is defined using nine

consecutive reforecast sets, spanning 5 weeks centred on the forecast initialisation

date (reforecast sets are run twice a week, every Monday and Thursday), of 11

members per reforecast. These sets are created by initialising the reforecast

ensemble on the same calendar date over the previous 20 y. This procedure

results in a model climatology of 9×11×20=1980 members covering the 1999

to 2018 period. Throughout this article, we use the model climatology defined

for the forecast initialised on 11 February 2019. Climatologies defined for other

initialisation dates are virtually identical.

Statistical methods

Significance testing For the significance stippling displayed on the maps, we

use a non-parametric (binomial) pairwise sign test at a 90% confidence level.
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Distribution fitting When fitting statistical distributions to the ensembles

during the probability ratio calculation, we employ the method of L-moments

(155), due to its numerical stability under small sample sizes.

3.6 Forecasts of the heatwave

This heatwave was well-predicted by the ECMWF ensemble prediction system.

Their coupled ocean-atmosphere forecasts indicated ‘extreme’ heat was possible

at a lead time of around two weeks, and probable at a lead time of around ten days

(Figure 3.2A), despite the exceptional nature of the heatwave in both the model

climatology and real world. As expected, the forecasts’ performance in predicting

the extreme heat at the surface is reflected in variables more closely linked to the

dynamic drivers of the heat, such as 500 hPa geopotential height (Figure 3.2B).

This successful forecast is a crucial part of our study as it means that we

are not only confident that the model used is able to simulate the event in

question; but that we are unequivocally performing an attribution analysis of

the specific winter heatwave that occurred in Europe during February 2019. This

is an important distinction to the framework used in ‘conventional’ or ‘risk-based’

(79) attribution studies (25, 63, 68, 181), which in general reduce the event to

some impact-relevant quantitative index, then estimate the increase in likelihood

of events that exceed the magnitude of the event in question. For example, a

heatwave attribution study may choose to define the event as the hottest observed

temperature during the heatwave, and then compute the attributable change in

likelihood of temperatures hotter than this recorded maximum (e.g. using models

or historical records). While this does provide useful information, it does not

answer the question of how much more likely anthropogenic activities have made

the specific heatwave that occurred, rather the question of how much more likely

anthropogenic activities have made a mixture of events that share one or more
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characteristics. Studies have attempted to provide a more satisfactory answer

to this first question by including a level of conditioning on the set of events

considered by using circulation analogues (182), or by nudging model simulations

towards the specific dynamical situation that occurred during the event in question

(82 , 164). Here we are evidently performing an attribution study of the specific

record-breaking heatwave that occurred in February 2019 due to the use of these

successful forecasts, that not only captured the heat experienced at the surface,

but also the dynamical drivers behind the heat.

As well as enabling us to answer the attribution question for a single specific

heatwave, the use of a numerical weather prediction model provides additional

benefits. Since large model ensembles are required to properly capture the

statistics of extreme events, many previous attribution studies, especially in the

context of heatwaves, have used relatively coarse, atmosphere-only climate

models (139, 140, 150), which may not fully capture all the physical processes

required to credibly simulate the extreme in question (60). In particular, the use

of atmosphere-only simulations may result in the full space of climate variability

being under-sampled due to the lack of atmosphere-ocean interaction (156).

This can lead to studies overestimating the impact of anthropogenic activity on

weather extremes (63, 78). More generally, Bellprat et al., and Palmer and

Weisheimer (62 , 77 ) have shown the importance of initial-value reliability in

model ensembles underlying robust attribution statements. Model evaluation

is therefore a key part of any robust model-based attribution study. Here, the

demonstrably successful forecast enables us to be confident that the model used

is providing credible realisations of the event.

A clear distinction between the typical climate model simulations used for

attribution (139, 150) and the forecasts used here is that the climate model

simulations are usually allowed to spin out for a sufficient length of time such

that they have no memory of their initial conditions; an ensemble constructed
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in this way will therefore be representative of the climatology of the model. If

such simulations use prescribed-SST boundary conditions, then the ensemble will

be representative of the climatology conditioned on the prescribed SST pattern

(140). Unlike climatological simulations, a successful forecast is conditioned upon

the component of the weather that is predictable at initialisation. In general, the

level of conditioning imposed upon the ensemble by the initial conditions reduces

as the model integrates forwards from the initialisation date. Hence, a forecast

ensemble initialised only a few days before an event will be much more heavily

conditioned (and therefore much less spread) than one initialised weeks before.

As the lead time increases, a forecast ensemble will tend towards the model

climatology, analogous to the climate model simulations discussed above. We

can relate these situations to the two broad attribution frameworks discussed in

(79): very long lead times, where the forecast simulates model climatology, are

analogous to ‘conventional’ attribution; while short lead times, in which the forecast

ensemble is heavily dependent on the initial conditions and therefore conditional

on the actual dynamical drivers that lead to the extreme event, are analogous to

the ‘storyline’ approach in (82 , 183). In order to synthesize between these two

frameworks, here we have chosen 4 initialisation times (3-, 9-, 15-, and 22-day

leads) for our experiments that span the range from a relatively unconditioned

climatological forecast to a short-term forecast that is tightly conditioned on the

actual dynamical drivers of the heatwave.
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Figure 3.2: Medium- to extended-range forecasts of the heatwave. A, ensemble

distribution of heatwave as event definition against forecast initialisation date for the

British Isles region. Gray PDF on far left shows model climatology, thick black lines

show lead times selected for the perturbed CO2 experiments, dashed gold line shows

heatwave magnitude in ERA5. Dots show ensemble mean. B, forecasts of Z500 over

Europe during the heatwave period compared to ERA5. y-axis shows the fraction of the

forecast ensemble with a pattern correlation at least as great as the levels indicated by

the contour lines, against forecast initialisation date. Thin dotted lines show lead times

selected for the perturbed CO2 experiments.
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3.7 Perturbed CO2 forecasts

In this study we choose to only change one feature of the operational forecast

in our experiments: the CO2 concentration. This means that the analysis we

carry out is limited to attributing the impact of diabatic heating due to increased

CO2 concentrations above pre-industrial levels just over the days between the

model initialisation date and the event. Although this results in a counterfactual

that does not correspond to any ‘real’ world (since it is one with approximately

present-day temperatures but pre-industrial CO2 concentrations), and thus re-

duces the relevance of our analysis to stakeholders or policymakers; it does

significantly increase the interpretability of our results, and remove a major source

of uncertainty associated with a “complete” attribution to human influence: the

estimation of the pre-industrial ocean and sea-ice state vector used to initialise

the model (184). Here we define a complete attribution as an estimate of the total

impact of human influence on the climate arising from anthropogenic emissions of

greenhouse gases and aerosols since the pre-industrial period. For each lead time

chosen, in addition to the operational forecast (indicated by ‘ENS’ in the figures)

we run two experiments using operational initial conditions and identical to the

operational forecast in every way except the experiments have specified fixed CO2

concentrations. One experiment has CO2 concentrations fixed at pre-industrial

levels of 285 ppm (PI-CO2), while in the other they are increased to 600 ppm

(INCR-CO2). These represent approximately equal and opposite perturbations

on global radiative forcing (185). We carry out these two experiments for each

lead time, perturbing the CO2 concentration in opposite directions, to ensure that

any changes to the likelihood of the event can be confidently attributed to the

changed CO2 concentrations. It is possible that, due to the chaotic nature of

the weather, the operational conditions were ideal for generating the observed

extreme, and any perturbation to the dynamical systemwould reduce the likelihood
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of its occurrence (79). If this were the case we would see a reduction in event

probability regardless of whether we increased or reduced the CO2 concentration.

Some previous work has been done on the impact of reduced CO2 concentra-

tions in the absence of changes to global SSTs. Baker et al. (159) explored how

temperature and precipitation extremes were affected by the direct effect of CO2

concentrations (defined there as all the effects of CO2 on climate beside those

occurring through ocean warming), finding the direct effect of CO2 increases risk

of temperature extremes, especially within the Northern Hemisphere summer.

Our experimental design is also reminiscent of some of the earliest work done on

investigating the impact of CO2 on climate in global circulation models (186, 187 ).

This work found that, in the absence of changes to SSTs or SICs, a doubling of

CO2 concentrations would change global mean surface temperatures over land

by ∼ 0.4 °C. These early studies indicate that changes in global land temperatures

are approximately linear with the logarithm of CO2 concentration.

We find that the best-estimate global mean change in land surface tempera-

tures attributable to the additional diabatic heating due to CO2 over pre-industrial

levels (henceforth the ‘CO2 signal’, calculated as half the difference between

the two experiments for a particular variable) at a lead time of two weeks (over

the final 5 days of the forecasts initialised on 2019-02-11) is 0.22 [0.20–0.25]

†. In general, the further away from the initialisation date, the slower the rate of

change of the globally-averaged ensemble mean CO2 signal, and the larger the

ensemble spread (Figure 3.3A). While in experiments with prescribed SSTs, we

might expect the CO2 signal in surface temperatures to approach a maximum

value within timescales on the order of months, in our experiments the CO2

signal will likely continue to increase in magnitude for centuries due to the ocean-

coupling, as is the case in the abrupt-4xCO2 experiment carried out in the Coupled

Model Intercomparison Project (CMIP) (142 , 188, 189). The zonal-mean patterns

†Numbers in square brackets [] represent a 90% CI throughout this chapter.
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of surface temperature CO2 signal are qualitatively similar to those exhibited

by CMIP5 and CMIP6 models during the abrupt-4xCO2 experiment (190, 191),

despite the considerably shorter timescales involved: small and very confident

changes in the tropics become larger but much less confident changes at the

poles. This heterogeneity in the zonal distribution of warming appears to originate

in the zonal distribution of the lapse-rate feedback; the weekly timescales of

these experiments is insufficient for the surface-albedo feedbacks to have any

significant impact (192).

We also examine the impact on the specific event dynamics over our region

of interest; since these were crucial in developing the extremes observed. Figure

3.3B shows the growth in 500 hPa geopotential height (Z500) errors (measured

as the mean absolute distance from ERA5 over the European domain) for each

of the experiments. This figure illustrates that there are no clear differences in

the ability of each experimental ensemble to predict the dynamical characteristics

of the event. In other words, we have not made the synoptic event any more or

less likely as a result of our perturbations. This is crucial as it means that we

can consider any changes to the magnitude of the temperatures observed to

be entirely due to the thermodynamic effect of changed diabatic CO2 heating,

and not due to the attractor of the dynamical system having changed as a result

of the perturbations we have made.

Figures 3.3C and 3.3D show analogous plots to 3.3B, but for inter-experimental

and intra-ensemble errors respectively. These indicate a couple of important

features. Firstly, no two experiments are more similar than any other two; the

magnitude of Z500 distances in Figure 3.3C are near identical for all lead and

validation times. Secondly, the error growth due to the CO2 perturbation is slower

than due to the initial condition perturbations; the errors in Figure 3.3C increase

slower than in 3.3D. However, by the end of the longest lead forecast, we can see

that the intra-ensemble errors have saturated, and the inter-experimental errors
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have grown to be the same magnitude. The saturation of intra-ensemble errors

by the end of this lead time reinforces our assertion that at this lead the forecast

is a good approximation of a climatological simulation; though will still clearly by

conditioned on low-frequency modes of variability in the climate system.
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Figure 3.3: Global temperature and synoptic-scale dynamical response to CO2
perturbations. A, CO2 signal in GMST. Brown and blue features show quantities over

land and ocean respectively. Line styles indicate initialisation date of the experiments.

Boxplots show average over 25 to 27 February 2019, with the black line indicating the

ensemble mean, dark shading the 90% CI around the mean, and light shading the

90% range of the ensemble. B, mean absolute error in Z500 between experiments and

ERA5. Colour indicates initialisation date and line style indicates experiment. Solid lines

indicates ensemble mean. The shading shows the 5 to 95% range of the operational

ensemble (ENS). C, as in B but for mean absolute distance between corresponding

ensemble members of different experiments. Line style here indicates the experiments

being differenced. The shading shows the 5 to 95% range of the differences between the

PI-CO2 and INCR-CO2 experiments. D, as in B but for intraensemble distances of the

operational ensemble.
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3.8 Attributing theheatwave todiabatic CO2heat-

ing

First, we examine the geographical pattern of the CO2 signal in the heatwave in

Figures 3.4A-D. These indicate several key features of the attributable direct

CO2 effect on the heatwave. The CO2 effect tends to grow with lead time,

consistent with its historical impact on global mean temperatures. It is generally

stronger over land than ocean, also consistent with global mean temperatures.

Finally, the ensemble tends to become less confident in its effect as the lead time

increases and the ensemble members diverge. The CO2 signal magnitude in the

heatwave generally exceeds the signal in GMST (Figure 3.3A), in particular in

Central Europe; possibly due to the high contribution of diabatic heating to the

heatwave arising from ideal dynamical conditions. Figure 3.4E shows boxplots

of the heatwave CO2 signal for the three regions of interest. Although there is

some region-specific variability, these reinforce the main messages illustrated

by the maps: the CO2 signal grows and decreases in confidence as the lead

time increases.

In addition to the absolute impact of the direct CO2 effect on the heatwave, we

also carry out a probabilistic assessment of its impact, consistent with conventional

‘risk-based’ attribution studies (79, 193). Due to the distinct approach we are

taking within this study, it is worth clarifying exactly what question we are answer-

ing with this probabilistic analysis. The specific question is: ‘given the forecast

initial conditions, how did the direct impact of increased CO2 concentrations

compared to pre-industrial levels just over the days between initialisation and the

heatwave itself change the probability of temperatures at least as hot as were

observed?’. Using conventional attribution terminology, we call the operational

forecast ensemble of the event our ‘factual’ ensemble, and the pre-industrial
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CO2 experiment our ‘counter-factual’ ensemble. We calculate the probability of

simulating an event at least as extreme as observed in the factual ensemble,

P1, and in the counterfactual ensemble, P0. These probabilities are estimated

by fitting a GEV distribution to the 51-member ensemble in each case. We then

express the change in event probability as a probability ratio, PR = P1/P0, which

represents the fractional increase in the likelihood of an event at least as extreme

as observed in the factual ensemble over the counterfactual ensemble (25, 35).

Uncertainties are estimated with a 100,000 member bootstrap with replacement,

rejecting samples for which the probability of the event in the factual ensemble is

zero. The resulting probability ratios are shown in Figure 3.4F. There are several

key factors that contribute to the best-estimate and confidence in the probability

ratios: the CO2 signal growth with lead time; the ensemble spread growth with

lead time; how extreme the event was; and how well-forecast the event was. The

larger the CO2 signal, the greater the increase in risk; the larger the ensemble

spread, the lesser the increase in risk and the lower the confidence; the more

extreme the event, the greater the increase in risk; and the better the forecast

(i.e. the closer the event to the ensemble centre), the greater the confidence.

We find that on the shortest lead time, the direct CO2 effect increases the

probability of the event over all European regions (significant at the 5% level based

on a one-sided test). For the well-forecast event experienced over the British Isles,

the direct CO2 effect increases the probability of the extreme heat by 42 [30–60]%.

For the France heatwave, which was well-forecast given its exceptional nature,

but for which the ensemble did not quite reach the total magnitude of the heat

experienced, the event probability increased by at least 100% (5th percentile), but

with a very wide uncertainty range. Finally, for the least remarkable but relatively

well-forecast event over the Mediterranean, the direct impact of CO2 increased

the event probability by 6.7 [4.6–9.7]%. These results from the very short lead

experiments represent very highly conditioned statements: in both ensembles
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the dynamical evolution of the event was near-identical (pattern correlation of

> 0.99 for all ensemble members, Figure 3.2B).

Moving out to the longer lead times, we find that the confidence in the change

in event probability decreases almost ubiquitously. This is as expected, since the

further we move away from the event, the less highly conditioned our ensemble

is, and the more dynamical noise we are adding to the system (79). However,

for the 9-day lead forecast, the uncertainty is low enough to have confidence

in the results for the majority of study regions. In particular, the British Isles

heatwave, for which the 9-day lead forecast was better than several of the regional

3-day lead forecasts (as measured by the Continuous Ranked Probability Skill

Score), increases in probability by 52 [29–94]% due to the direct CO2 effect.

However, for France the uncertainty range is so large that based on these results

alone we would have no confidence in the direction of the CO2 effect. Moving

further out to the 15- and 22-day lead forecasts, this loss in confidence becomes

more pronounced, especially for the British Isles region. For this region, we can

get virtually no useful information out of these probabilistic results for the two

longest lead experiments. This drop-off in confidence arises due to the increasing

ensemble spread from dynamical noise, and large reduction in the number of

factual ensemble members able to simulate an event as hot as occurred in reality

between the 9- and 15-day leads. A similar, though generally less pronounced

drop-off in confidence is found in all other regions.

We can make use of our INCR-CO2 experiment to increase our confidence

that the positive results we obtained in the probabilistic analysis above are in fact

due to the direct CO2 effect, and not just random variability. If CO2 were driving

the changes in event probability between the PI-CO2 and operational forecasts,

then we would expect to see an even more dramatic increase in event probability

between the PI-CO2 and INCR-CO2 forecasts. This is indeed what we find. For

all regions and lead times, our best-estimate change in event probability is above
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zero when CO2 concentration is increased from pre-industrial levels of 285 ppm

to 600 ppm. This therefore increases our confidence further that the positive

attribution to CO2 under high conditioning is genuinely significant. From these

results, it also appears that there is a general trend of change in event probability

increasing as the forecast lead increases, similar to the absolute impact of the

direct CO2 effect trend; though it is still somewhat masked by uncertainty.

An important caveat on all of these results, probabilistic and absolute, is

that they represent a lower bound on the estimate of the direct CO2 effect. As

is clear from the development of the CO2 signal estimates with lead time, the

model is still adjusting to the sudden change in CO2 concentration. Although

the pure tropospheric response to this perturbation would be expected to reach

near-equilibrium on a timescale of order days (194), the deep ocean equilibration

timescale would be considerably longer, of order centuries. Hence, we would

expect the ‘full’ effect of CO2 to be greater than the estimates we present here. This

is consistent with a recent study that used unconditioned climatemodel simulations

to carry out an attribution of the complete anthropogenic contribution to the same

event, which produced much higher estimates of the probability ratio (173).
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Figure 3.4: Attribution of the direct CO2 influence on the heatwave. A-D, maps of the

ensemble mean attributable CO2 signal in the heatwave for the four forecast lead times,

which are indicated by the subplot titles. Stippling indicates a significant positive signal at

the 90% level. E, boxplot of the absolute CO2 signal for the three regions of interest and
over the four forecast lead dates. Black line indicates ensemble median. Dark shading

indicates 90% confidence in the median, and light shading indicates 90% confidence in

the ensemble. Gray line indicates median difference between the operational forecast

and PI-CO2 experiment. F, as in E, but showing probability ratios using the operational
forecast as a factual and PI-CO2 experiment as a counterfactual ensemble. G, as in F, but
using the INCR-CO2 experiment as a factual and PI-CO2 experiment as a counterfactual
ensemble.
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3.9 Discussion

Here we have presented a partial, forecast-based attribution of the European

2019 winter heatwave. Taking advantage of successful medium-range forecasts

from ECMWF, we used a state-of-the-art numerical weather prediction model

that was demonstrably able to predict the event to attribute the direct impact of

CO2 through diabatic heating over pre-industrial levels and just over the days

immediately preceding the event on the high temperatures experienced in several

regions of Europe. We explored how the level of dynamical conditioning imposed

can be specified by changing the lead time of the forecasts. Finally, we presented

our quantitative results using two different approaches: measuring the attributable

absolute and probabilistic impacts of CO2; inspired by the ‘storyline’ and ‘risk-

based’ attribution frameworks (25, 79, 193, 195).

There are several advantages associated with this forecast-based attribution

methodology, compared to conventional climate model based attribution. One

simple advantage is that forecast models generally represent the technological

peak within the spectrum of General Circulation Models (GCMs). They almost

always have a higher resolution than the models used for global climate simulation.

In addition, the forecast model used here is coupled ocean-atmosphere, while

the large climate model ensembles used for attribution often use prescribed

SSTs (140). The use of prescribed SSTs can lead to model biases that project

strongly onto attribution results (156). A final advantage arising from the use

of an operational forecast model is the wealth of literature and model analysis

that will already be available before an attribution study is initiated. As well

as these advantages associated with the type of model there is the crucial

advantage associated with using successful forecasts: the specific and intrinsic

model verification. Due to the difficulty in fully quantifying how well climate

models can represent an individual specific event (in particular, the very large
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ensembles required to have a large enough sample of characteristically similar

events), climate model based attribution studies tend to perform statistical model

evaluations; or/and account for this uncertainty through multi-model ensembles

(61). On the other hand, if a forecast model that demonstrably predicted the

event as it occurred is used, no further model verification or evaluation is required

to test whether the model is capable of producing a faithful representation of

the specific event.

Related to this intrinsic verification is an important point on the framing of

forecast-based attribution studies. Climate model based attribution studies tend

to characterise an event in terms of some quantitative index closely related to

the impact of the event (such as the maximum temperature observed during a

heatwave). They then use climate model simulations to determine how climate

change has affected the probability of observing an event at least as extreme as

the actual event. This is often done without imposing any dynamical conditioning

on the simulations, though this is an area of active research (182 , 196). This

unconditional approach means that the specific question being answered is not

‘how has anthropogenic climate change affected the probability of event X?’, but

‘how has anthropogenic climate change affected the probability of all events that

are at least as extreme as event X in terms of the index used to define X?’. The

latter question does not fully answer the question of how climate change has

affected the actual event that the study is concerned with. In contrast, the use of

a forecast model that predicted the event ensures that any attribution analysis

is unequivocally an attribution of that specific event (167 ).

In addition to its advantages, this forecast-based attribution methodology also

has associated issues that must be overcome. Firstly, the forecast model must

have produced a ‘good’ forecast of the event. If the model is unable to represent

the event as it happened, then we cannot have confidence in any estimates of

the impact of climate change on that event. Issues can arise even in qualitatively
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‘good’ forecasts, such as the forecast of the heatwave over France in this study.

As very few ensemble members, if any, exceeded the observed magnitude of the

event for this region, the confidence in our estimates of the probabilistic impact

of CO2 on the event is extremely low (since we are extrapolating the distribution

shape outside the range of our data). Although the estimates of the absolute

impact of CO2 do not share this lack of confidence, this is still a problem. It is

possible that applying some bias correction procedure (e.g. 153, 197 , 198) based

on the model climatology to the model output before analysis might alleviate these

issues to some extent, but not if the model is simply unable to predict the event in

question (i.e. a forecast bust). Secondly, the short timescales involved in these

medium-range forecasts mean that the interpretation of any results becomes

more difficult as the model is still adjusting to the perturbations imposed (165),

at least in the case of the CO2 perturbations applied here. This adjustment is

clear on a global scale in Figure 3.3A. Due to this incomplete adjustment, any

quantitative statements of attribution represent a lower bound on the ‘true’ value.

We have shown that the direct effect of CO2 concentrations over pre-industrial

levels on the February heatwave is significant, even on timescales as short as

a few days. Based on the very good 9-day lead forecast of the heatwave over

the British Isles, the region that saw the most climatologically exceptional event,

the direct effect of CO2 was to increase the magnitude of the heatwave by 0.31

[0.24–0.37] K, and the conditional probability of the heatwave by 52 [29–94]%. It

is very important to bear in mind that this statement of risk is highly dynamically

conditioned (Figure 3.2B). These estimates of the impact of CO2 on the heatwave

follow the storyline attribution framework, since we have effectively removed the

dynamical uncertainty from our simulations with this strong conditioning imposed

by the short lead time (79, 81, 195). Our longer, 22-day lead experiments can

contrast this storyline analysis with relatively unconditioned results much closer

to the climatological simulations typically used in the conventional ‘Risk-based’
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attribution framework (25, 61). At this lead, we find that although over all regions

the best-estimate impact of the direct CO2 effect is to enhance the heatwave by

approximately 0.5 K, in none of the regions is this impact significantly positive

at the 90% level (based on the bootstrapped confidence in the median value).

Corresponding estimates of the probability ratio have so low confidence that

they provide virtually no useful information. Increasing the forecast ensemble

size, which is small compared to the climate model ensembles used in most

attribution studies, would increase the confidence, potentially resulting in useful

quantitative estimates of the probability ratio even at these longer lead times. Our

results illustrate some of the concerns voiced recently over the conventional risk-

based approach to attribution (79, 193). Due to the dynamical noise present in

unconditioned ensembles, it is possible to obtain an inconclusive attribution within

a conventional risk-based framework, and at the same time obtain a confident

positive attribution if the dynamical uncertainty is removed through conditioning

(in our case achieved by reducing the forecast lead).

While this study provides a demonstration of the potential use for forecast

models within attribution science, it remains a partial attribution to the direct

CO2 effect only. For forecast-based attribution to provide results that are fully

comparable to conventional climate model-based attribution, we will need to

demonstrate how the complete anthropogenic contribution to an extreme event

could be estimated with successful forecasts. The next step to progress forecast-

based attribution further will be to remove an estimate of the anthropogenic

contribution to ocean temperatures from the model initial conditions (e.g. 184).

If performed in addition to reducing other greenhouse gas concentrations and

aerosol climatology down to their pre-industrial levels, this should allow us to run

pre-industrial forecasts of an event. This has been done previously for a seasonal

forecast model by Hope et al. (165–167 ). They removed the anthropogenic

signal from 1960 onwards from the initial conditions, but we could in principle

Typeset on January 5, 2023



82 3.10. Chapter close

remove the signal from pre-industrial times onwards in order to estimate the

complete anthropogenic contribution to an event. Although it is highly likely that

there will be methodology specific issues that arise in this direction, we suggest

that being able to estimate the complete anthropogenic contribution to an extreme

event using a forecast model that was able to predict the event in question would

be extremely valuable. Developing a methodology to allow us to do so might

also provide a pathway to operational attribution being able to be carried out by

weather prediction centres, due to the routine frequency at which they produce

forecasts. In addition to attempting a ‘complete’ forecast-based attribution of

an extreme event, we would like to explore how increasing the ensemble size

may allow us to provide confident forecast-based attribution analyses within

the unconditioned risk-based framework (i.e. at long forecast lead times). One

potential avenue to allow us to do this efficiently might be to reduce the resolution

of the forecasts, though this would not be appropriate if it reduced the ability of

the model to represent the event in question. On a similar note, we would also

like to extend our experiments out to seasonal timescales. This would reduce

the issues with the interpretation of our medium-range results that occurred due

to the model adjustment to the sudden changes to the CO2 concentration. It

is possible that seasonal forecasts have the greatest potential to target for an

operational forecast-based attribution methodology.

3.10 Chapter close

There are a number of interesting outcomes from this chapter. The most impor-

tant one was that this approach to attribution, using reinitialised state-of-the-art

operational weather forecasts, was possible — even if here I used it to answer

a limited and specific question. Another surprising finding was the rapidity on

which the direct impact of CO2 could be detected: my experiments suggest that if
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CO2 were suddenly reduced to pre-industrial levels, it would detectably reduce

the intensity of extreme heat events on timescales of days — i.e. well before

the SSTs have had any time to respond. This finding translated into a significant

increase in the likelihood of the exceptional temperatures observed over the UK in

February 2019 attributable to increased CO2 concentrations above pre-industrial

levels alone. The final key takeaway from this study was that the predictability

of the heatwave remained remarkably intact despite the ‘kick’ we had given the

model at initialisation in the perturbed CO2 forecasts. This was vital for the reason

described in more detail within Perturbed CO2 forecasts: it means we could

ascribe our results to the impact on CO2 on the heatwave, rather than to the

chaotic nature of the weather system. If we had found that the predictability was

less stable, we would have had to investigate further why this was the case,

potentially returning to the drawing board for this approach. However, despite

the promise that forecast-based approaches demonstrated within this study,

the attribution I carried out was very limited in scope: to a single component

of anthropogenic influence on the climate. In order to make results from the

approach truly relevant to and of use for stakeholders I needed to determine how

the methodology could be altered to allow more complete estimates of human

influence on individual weather events to be made. This attempt at more complete

attribution, through perturbing both the forecast boundary and initial conditions,

is the focus of the next chapter of this thesis.
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Changes in many extreme weather and climate

events have been observed since about 1950.

Some of these changes have been linked to human

influences ...

— IPCC, AR5, 2014

4
Attribution with perturbed initial

and boundary condition forecasts

This chapter represents the culmination of my work regarding forecast-based

approaches to attribution. I produce perturbed initial and boundary condition

forecasts of the 2021 Pacific Northwest Heatwave, an unprecedented event

that posed significant challenges to traditional approaches to attribution. I use

these counterfactual forecasts to provide a more complete estimate of the human

contribution to the heatwave than was possible in the previous chapter.

Author contributions: This chapter is based on the following publication *

Leach, N. J., Roberts, C. D., Heathcote, D., Mitchell, D. M., Thompson, V., Palmer, T.

N., Weisheimer, A., & Allen, M. R. (2022). Reliable heatwave attribution based on

successful operational weather forecasts. TBC, in submission. https://doi.

org/10.21203/rs.3.rs-1868647/v1

*with the author contributing as follows. Conceptualisation, Data curation, Formal analysis,

Investigation, Methodology, Resources, Visualisation, Writing – original draft and Writing —

Review & Editing.
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4.1 Chapter open

I now continue precisely from where I left off at the end of the previous chapter.

At this point, I had demonstrated that a forecast-based approach was possible —

but only in the context of a very limited attribution to the direct effect of CO2 alone.

For such an approach to provide not just interesting, but useful information, I

needed to work out how to provide a more complete estimate of the anthropogenic

influence on specific weather events. Based on previous attribution work (68), the

key earth-system component I would need to consider was the ocean. Following

this previous work, I planned to incorporate the impact of human influence on the

ocean by perturbing the initial conditions of the forecast model. I also planned to

continue using the same forecast model, ECMWF’s IFS, as the previous chapter,

both for consistency and due to the available computing resource. This presented

a key challenge: while there is a significant quantity of literature on perturbed SST

approaches to attribution (184), the IFS is coupled, and I would therefore need

to determine how to perturb the 3D ocean conditions, not just the surface. This

technical challenge also presented an opportunity: perturbing the full depth of the

ocean means that the resulting simulations are consistent with observed changes

in ocean heat content, and do not contain any infinite sources or sinks of heat

as is the case with the prescribed-SST simulations widely used in attribution. It

also means that the impacts of cooler ocean temperatures on ocean-atmosphere

interactions will be taken into account, further increasing the physical consistency

with reality over prescribed-SST simulations. An important part of this chapter is

therefore the methodology I developed with advice from Chris Roberts at ECMWF

for producing counterfactual forecast initial conditions. An associated question

I would have to answer would be whether any perturbations made (effectively

‘kicking’ the model) would fundamentally affect the predictability of the event.

This was something I discussed in the previous chapter, but it would become
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even more important here, since the perturbations applied here represent a much

larger kick than only altering the CO2 concentration.

At the time when I was planning these simulations, the 2021 Pacific Northwest

Heatwave had just occurred, presenting a very natural case study for us to apply

this more complete forecast-based approach to, as conventional approaches

had clearly been pushed to their limit with this event. Overall, the aim of this

study was to demonstrate that we could provide a near-complete estimate of the

human influence on this unprecedented event using a weather forecast model

that was demonstrably able to simulate it.

4.2 Abstract

Extreme weather attribution, quantifying the role of human influence in specific

weather events, is of interest to scientists, adaptation planners and the general

public (34). However, the devastating 2021 Pacific Northwest heatwave chal-

lenged conventional statistical approaches to attribution due to the absence of

similar events in the historical record, and model-based approaches due to poor

representation of key causal processes in current climate models (199). Here we

use state-of-the-art operational medium-range and seasonal weather prediction

systems, applied for the first time to this kind of climate question and unequivocally

able to simulate the detailed physics of the heatwave in question, to show that

human influence on the climate made this event at least 8 [2–30] times more

likely to occur. Quantifying the absolute probability of such an unprecedented

event is more challenging, but the length of the observational record suggests at

least a multi-decade return-time in the current climate, with the likelihood doubling

every 17 [10–50] years at the current rate of global warming. Our forecast-

based approach synthesises the storyline approach, which examines human

influence on the physical drivers of an event in a deterministic manner (79), and
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the probabilistic approach, which assesses how the frequency of a class of events

has been affected by human influence (25). If developed as a routine service in a

number of forecasting centres, it could provide reliable estimates of the changing

probabilities of all extreme events that can be represented in forecast models,

which is critical to supporting effective adaptation planning (64, 200).

4.3 Introduction

Although considerable progress has been made over the past decade in quan-

tifying the impact of climate change on individual extreme weather events (25,

34), challenges remain over the assessment of the most extreme events. Such

events are particularly difficult to draw confident conclusions about due to the lack

of historical analogues, and their often poor representation in the climate models

normally used for event attribution. Two contrasting mainstream frameworks to

event attribution have been developed: the storyline approach, which examines

anthropogenic influence on the causal drivers of the extreme in question and is

therefore highly conditioned on its specific characteristics (65, 72 , 79); and the

probabilistic approach, which aims to determine how anthropogenic influence has

affected the likelihood of events at least as extreme as the one in question (61, 68).

A key challenge for extreme event attribution is that we cannot make direct

observations of a world without human influence on the climate, so all approaches

must involve some kind of modelling, either statistical (66) or dynamical (68).

Both face difficulties with the most extreme events, especially when considering

the nonlinear processes that often drive unprecedented events. Statistical models

used in conventional attribution can break down when faced with such events due

to the lack of appropriately similar historical samples (201, 202), while numerical

climatemodels generally used in attribution studies are typically coarse (O(100 km)

horizontal resolution), and poorly represent important processes involved in the
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development of extreme weather events, such as blocking (80) and atmospheric

rivers (203). Even with a ‘perfect’ model of the earth system, the unconditioned

nature of the vast majority of climate model simulations used in attribution means

that obtaining enough analogues of unprecedented events (204) to avoid the

same issue faced by statistical modelling of the observational record requires very

large ensembles, possibly beyond current computational limits (205). Crucially,

the role of climate change in an individual event may differ from that in other

events of the same class due to the specific physical processes behind it (76, 77 ).

The storyline framework overcomes some of these issues, and the risk of

a false negative, by examining the impact of climate change on the causal

drivers of an event deterministically. For instance, one might separate out the

thermodynamic (typically high confidence in response to climate change and well-

represented in numerical models) and dynamic (typically much lower confidence

in response to climate change, and more poorly represented in numerical models)

drivers of an event, for example by conditioning on the concurrent large scale

atmospheric circulation. One approach for applying such conditioning is to

‘nudge’ climate model simulations towards the large-scale flow observed during a

particular extreme (82 , 83). The storyline approach does not, however, provide

quantitative information about how climate change has affected the probability

of the event in question, which is of interest to the general public and relevant

to policymakers for adaptation planning.

We propose a forecast-based approach that could synthesise the probabilistic

and storyline frameworks to extreme event attribution (119). Although they

belong to the same class of dynamical model and often share components (206),

operational weather forecast models are typically run at much higher resolutions

than climate models, improving their overall physical representation of extremes.

They are validated for producing predictions that span the range of possible

weather by the centres that produce them to a much higher degree than climate
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models, where other aspects are more important. In addition to this high level

of explicit validation, using a model that has successfully predicted an event

ensures that the model is able to accurately represent all the processes involved

in the event in question, increasing the reliability of attribution statements based

upon it (77 ). Stepping back through lead times allows for a robust storyline-like

framing by examining how climate change has affected the causal drivers of the

specific event within the limits of predictability. Probabilistic attribution can be

performed using a reliable forecast ensemble, with the level of conditioning set by

the lead time - the limiting case of long lead times is equivalent to a conventional

unconditioned analysis. There has been some previous work into forecast-based

attribution, using seasonal forecast models (165–167 , 207 , 208) and exploring

the conceptual framework (196, 209, 210). To our knowledge, however, this

study is the first time that a complete forecast-based attribution has been carried

out in a coupled operational forecast model at such a high resolution.

In this study we use the coupled operational ECMWF model to analyse the

Pacific Northwest heatwave, taking advantage of its successful predictions of

this unprecedented event at leads of over a week. We perform counterfactual

forecasts of the event by perturbing the initial and boundary conditions of the

model in order to simulate how the heatwave might have emerged had it occurred

in a cooler pre-industrial world, or a warmer future world. We then compare the

counterfactual and operational forecasts to assess the impact of anthropogenic

climate change on both the magnitude and probability-of-occurrence of the event.

We believe that this forecast-based approach opens the door to not only a reliable

and practical operational attribution system, but also to a robust way of generating

projections of future weather explicitly referenced to the forecasts used already

by adaptation planners (183).
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4.4 The Pacific Northwest heatwave

At the end of June 2021, a large fraction of the Pacific Northwest region of the

US and Canada experienced unprecedented high temperatures, including the

cities of Portland, Salem, Seattle and Vancouver (Figure 4.1). This heatwave

(the ‘PNW heatwave’) has been directly linked to many hundred excess deaths

during and following it, making it the deadliest weather event on record for both

Canada and Washington state (211). The heatwave peak was observed between

the 28th & 30th June, though temperatures were still exceptionally high on the

days immediately before and after this period (212 , 213). Many local maximum

temperature records were broken during this period, including the Canadian

all-time record by a margin of 4.6 °C.

Based on current understanding, the heatwave arose from an optimal com-

bination of proximal drivers (199, 214–217 ). Development of an omega block

between the 23rd-27th coincided with the landfall of an atmospheric river (AR)

on the 25th. Warm air was drawn up from the tropical West Pacific, heated

diabatically through condensation in the river and then further heated adiabatically

through subsidence: both the temperature and lapse rate at 500 hPa reached or

approached record levels in the regions affected. This atmospheric heating was

enhanced by soil moisture feedbacks (218, 219) and high insolation at the land

surface during the hottest hours of the day (Figure 4.4). Given the unprecedented

nature of the observed heatwave, any dynamical numerical model would need

to capture all these processes, including the coupling between them, in order

to produce an accurate representation of the event.

Despite the observed temperatures lying far outside the historical record, the

heatwave was well predicted by numerical weather forecast models such as

from ECMWF at lead times of more than a week (220). The seasonal forecast

from ECMWF captured one important aspect of the event: it predicted a thicker
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troposphere than average (measured by 500 hPa geopotential height) over the

Pacific Northwest during the summer. A key change in the predictability of the

exceptional temperatures occurred around June 21st, being the earliest point

at which the penetration of the AR over land was well represented (216). The

success of these forecast models provides an opportunity to use them to examine

the influence of anthropogenic climate change on the event as it actually occurred.
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Figure 4.1: Features and forecasts of the Pacific Northwest heatwave. Top panel:

Surface temperature anomalies at the time of the peak heat during the heatwave within

the region enclosed by 45–52 N, 119–123 W (indicated by the dotted rectangle). Solid

black contours show the 500 hPa geopotential height anomaly averaged over 26-30th

June 2021. Data are from ERA5 reanalysis (88). Inset: timeseries of annual maximum

temperatures for the same dotted region. Bottom panels: As above, but taken from the

ensemble member within the forecast initialised on the date given above each panel that

predicted the nearest temperature to the reanalysis within the dotted region.
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4.5 Methods

Event definition

How the extreme event of interest is quantified - the event definition - is a key

methodological decision that must be made in extreme event attribution studies.

A significant amount of previous work has shown the impact of the event definition

on the quantitative outcome of the analysis (158, 174, 221). In this study we

use a definition consistent with a previous attribution study of the PNW heatwave

(222) to allow for a comparison between our forecast-based approach and their

probabilistic statistical and climate-model based approach.

We first average maximum temperatures over the region enclosed by 45–52

N, 119–123 W (indicated by the dotted rectangles in Figures 4.1 & 4.4). For the

event as observed in the ERA5 reanalysis (88) we then take the peak temperature

recorded during the heatwave, which occurred at 00 UTC on 2021-06-29. For

the event as simulated in the medium-range forecast ensemble members, we

take the peak temperature that occurred between the 26-30th June, the period

over which the heatwave occurred in reality. For the event as simulated in the

seasonal forecast ensemble members, which we would not expect to predict the

precise timing of the heatwave, we take the peak temperature over the full summer

season. The differences between the event definitions of the medium-range and

seasonal cases lead to the discrepancies in the climatologies shown in Figure 4.6.

Experiment details

Model details The medium-range experiments we have performed use the

version of the IFS EPS that was operational at the time of the PNW heatwave,

CY47R2 (223). The forecast model atmosphere is run at a resolution of O640

(∼18 km) and has 137 vertical levels. The atmosphere is coupled to a 0.25

Typeset on January 5, 2023



96 4.5. Methods

degree wave model (224), 0.25 degree sea ice model (225), LIM2, and 0.25

degree ocean model (226), NEMO v3.4, with 75 vertical levels (ORCA025Z75

configuration). We maintain the same number of ensemble members as the

operational system, 51, throughout our experiments.

The seasonal experiments are performed with ECMWF‘s operational seasonal

forecasting system, SEAS5 (227 ). This uses IFS CY43R1 (228) at a horizontal

resolution of Tco319 (∼36 km) with 91 vertical levels. The seasonal configuration

of IFS CY43R1 is coupled to a 0.5 degree wave model, LIM2, and NEMO v3.4

in the ORCA025Z75 configuration. We maintain the same number of ensemble

members as the operational system, 51, throughout our experiments.

Simulation setup Our experiments all use the exact operational setup (model

configuration and initial conditions) as their base. To this setup, we:

1. Change the CO2 concentrations used to a ‘pre-industrial’ level of 285 ppm,

and a ‘future’ level of 615 ppm. These represent the same fractional change

in opposite directions from the present-day concentration of 420 ppm used

in the operational forecast system.

2. Subtract (for the pre-industrial forecast) or add (for the future forecast) a

perturbation of the estimated anthropogenic influence on the ocean state

since the pre-industrial period from the initial conditions of the forecasts

(through the ocean restart files). The estimation of this perturbation is

described below. We use estimated perturbations for 3D temperature, SIC,

and sea ice thickness.

3. Check the sea ice fields for unphysical values. In the perturbed restarts, we

ensure that SIC does not exceed 1 or subceed 0. We ensure that sea ice

thickness does not subceed 0. Values outside these bounds are set to their
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nearest bound. Finally, we set sea ice thickness to 0 where SIC is 0, and

vice versa.

4. Modify ocean salinity such that in-situ ocean density is preserved following

the 3D temperature perturbation as calculated using the equation of state

from the forecast ocean model. The salinity compensation is achieved

to machine precision using a simple gradient descent algorithm. The

resulting coupled forecasts are thermodynamically consistent with the im-

posed ocean heat content anomalies without any adjustments to the initial

ocean circulation, mixed layer depths, or horizontal pressure gradients.

Importantly, and unlike uncoupled forecasts constrained by specified sea-

surface temperatures, there are no infinite sources or sinks of heat in the

resulting counterfactual forecasts. This approach is justifiable in shorter-

range forecasts as there is no direct influence of salinity on the overlying

atmosphere. This assumption may eventually break down at lead times

comparable to ocean advective processes, for which there could be indirect

feedbacks on the atmosphere associated with salinity-driven changes in the

ocean state. Nevertheless, this approach works well for the medium-range

and seasonal forecasts described in this study.

The perturbations used are computed using an optimal fingerprint analysis

(5, 6, 67 ). We first calculate the Anthropogenic Warming Index (AWI) using

anthropogenic and natural radiative forcings from AR6 (229) and the HadCRUT5

GMST dataset (151). The AWI provides us with a plausible estimate of the

fingerprint of anthropogenic influence on other climate variables (5). For each

perturbed variable, we then regress observed timeseries at each gridpoint onto

the AWI, using the following data sources:

• Sea ice thickness: ORAS5 (1958:2019) (230)
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• SIC: ORAS5 (1958:2019) (230)

• SST: HadISSTv1.1 (1870-2019) (141)

• Subsurface temperature: WOA18 (1950-2017) (231)

We then scale the computed regression coefficients at each point by the

change in AWI between the pre-industrial period of 1850-1900 and 2019 to

produce our final estimated perturbations. The sea surface, and zonally and

globally averaged temperature profiles are shown in Figure 4.2.

Finally, we combine the sea surface and subsurface temperature perturbations.

We did not use a subsurface temperature dataset in isolation since observations

of the SST are considerably more abundant in the early 20th century than

observations of subsurface temperatures, and since the temperatures at and

near the surface are likely to be the most important for the medium-range fore-

casts performed, we leveraged the additional information contained in observed

SST. We combine the two by relaxing the sea surface perturbation towards

the subsurface perturbation using a relaxation depth scale of 60 m (the surface

autocorrelation scale in WOA18).

We note that estimation of the perturbation, and in particular the subsurface

temperatures, is associated with considerable uncertainty due to the lack of

observations in the pre-ARGO era (232 , 233). Here we have used a single best-

estimate perturbation due to constraints on the available computational resource,

but to account for this uncertainty an ensemble of perturbations could be applied

(181). A possible way in which such an ensemble could be derived would be to

apply optimal fingerprinting to an ensemble of coupled climate models.

Typeset on January 5, 2023



4. Attribution with perturbed initial and boundary condition forecasts 99

Figure 4.2: The initial ocean state perturbation applied. Left panel: map of the

surface temperature perturbation. Top right panel: map of zonally averaged temperature

perturbations as a function of depth. Bottom right panel: globally averaged temperature

perturbation as a function of depth. Note that the x-axis switches from a linear to

logarithmic scale at a depth of 500 m.
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Bias correction of seasonal forecast ensembles

Climate drift can be an issue in the use of coupled seasonal forecast models

(234). We find a non-negligible drift in the daily maximum temperature SEAS5

forecast ensemble initialised in May over the PNW region. This drift results in a

positive temperature bias that grows with lead time. Hence, using the raw model

output in our analysis would overestimate the probability of the PNW heatwave.

While biases will often begin to develop immediately within forecast mod-

els, this climate drift is most typically associated with (and corrected for in)

subseasonal-to-seasonal forecasts. Magnusson et al. (235) examined tempera-

ture biases in the low- to mid-troposphere, demonstrating that although they grow

with lead time, they grow most rapidly during the first few days of the forecast.

Their results appear consistent with our findings, as they demonstrate a positive

bias in 700 hPa temperatures over the PNW region for days 40–44 of 20 years of

JJA reforecasts. However, despite their finding that biases grow quickest initially,

we do not find large biases in the medium-range forecasts and experiments

analysed here, and so only bias-correct the seasonal forecast ensembles.

To account for the drift, we perform a simple bias-correction procedure on

the seasonal forecast ensembles, informed by comparing the SEAS5 hindcasts

over 1981-2020 with ERA5 reanalysis data over 1950-2020 (using the full time

period that data is available and excluding the year of the event, 2021). We

do this in three steps:

1. Remove the attributable forced trend from both the reanalysis and hindcasts

by regressing mean JJA daily maximum temperatures onto the AWI (5). This

produces a forecast ensemble without the estimated anthropogenic warming

component, thus accounting for potential differences in this component

between the forecasts and reanalysis. We do this to ensure that these

differences do not get mixed in with the biases arising from forecast drift.
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2. Remove the drift from these detrended hindcasts, estimated by first av-

eraging the hindcasts for each lead time over all years and ensemble

members (producing a model climatology for each JJA day), and subtracting

this from the corresponding reanalysis average over all years. We then

regress this lead time dependent model-bias timeseries onto the lead times,

producing a linearly lead-time dependent drift correction (234). We find that

the correction required is approximately 0.6 K month−1.

3. The drift-corrected hindcasts still exhibit a positive bias during periods of

extreme high temperatures, possibly as a result of biases in the modelled

surface processes during such extreme conditions. Hence, we finally

remove the remaining mean bias in annual maximum temperatures in the

hindcasts compared to reanalysis.

We apply this bias correction procedure to both the seasonal hindcasts shown

in Figure 4.6 and used to estimate the return time of the event, and to the opera-

tional and perturbed seasonal forecasts of the 2021 summer. Figure 4.3 shows

the results of this bias correction procedure, following Thompson et al. (236).

We note that validation of the bias correction procedure on the SEAS5 dis-

tribution of annual maximum temperatures (TXx) is challenging due to the un-

precedented nature of the 2021 event. If we perform an analysis of the higher-

order moments of the SEAS5 and ‘observed’ (ERA5 reanalysis over 1950-2020)

distributions of TXx (236), we find that the bias-corrected ensemble tends to have

larger values of higher-order moments than the observed timeseries. However, if

the 2021 event is included in the observed distribution, then the opposite is found,

due to the large impact of such an outlier on these moments. This sensitivity to

inclusion / exclusion of the 2021 event, demonstrated in Figure 4.3, is why we

have opted to perform a simple but physically motivated bias correction rather

than a more complex statistical correction such as a quantile map.
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We also note that the magnitude of the bias correction required is of a similar

order of magnitude to the anthropogenic signal found. This is another reason

for keeping the correction simple, and ensuring that it preserves such signals.

This could potentially give reason to reduce the confidence in these signals, as

is the case with the similarly large absolute biases broadly present in climate

models. However, Stockdale (234) found that this linear drift correction was able

to preserve predictable signals present in seasonal forecasts even when the

drift was larger than the signal. This finding provides some confidence that such

a correction is applicable here, even if model drift may affect externally forced

signals to a small degree (additionally noting that the model drift is still far smaller

than the anomalies observed during the heatwave).
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Figure 4.3: Validation of the bias correction applied to the SEAS5 seasonal forecast

simulations, following Thompson et al. (236) Figure 2. Left panel: PDFs of summer

maximum temperatures in detrended reanalysis, and raw and bias-corrected seasonal

hindcasts. Right panels: CDFs of detrended proxy raw and bias-corrected seasonal

hindcast timeseries mean, variance, skewness and kurtosis compared to reanalysis

values. In all panels, we show reanalysis both including and excluding the 2021 PNW

heatwave.
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Statistical methodology

Intensity changes We calculate changes in intensity as the difference between

the average of the nearest quintile of each ensemble to the event (in terms of

peak temperatures). For the three longer leads, this is effectively the difference

between the averages of the uppermost quintile of the two ensembles.

Risk changes We calculate the relative risk (also known as the probability

ratio) by first fitting either a GEV distribution to the full operational ensemble (for

the shortest lead) or a straight line on a return-time diagram (i.e. an exponential

tail) to the nearest quintile of either the operational ensemble (for the other two

medium-range leads) or the model climatology (for the seasonal lead, since the

tail of the operational ensemble lies considerably further below the event threshold

than the tail of the much larger model climatology). We do this because while the

shortest lead ensemble is well represented by a GEV distribution, the other three

are not, and have generally heavier tails than estimated by likelihood-maximising

GEV distributions. In these cases, where the event threshold lies in the extreme

tail of the ensemble, the tail properties of the approximating distribution project

considerably onto the estimated probability of the event. Hence, to avoid any

undue assumptions on the tail shape, we fit a straight line on a return-time diagram

such as Figure 4.6 (assuming an exponential tail) to the nearest quintile.

After fitting an appropriate distribution, we then shift the location of this distri-

bution by the estimated attributable warming. We then calculate the probability of

observing an event at least as intense as the PNW heatwave (the dashed line

in Figure 4.6) in the original distribution and the shifted distribution. The relative

risk is the ratio of these two probabilities (Pcurrent/Pshifted).

Throughout this chapter, CIs are calculated using a 10,000 member non-

parametric bootstrap with replacement.
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4.6 Forecast-based attribution

The date at which we initialise our perturbed forecasts is a key choice that

allows us to condition our attribution analysis on different synoptic drivers of

the heatwave, which become predictable at different leads (215, 216). The

climate change response of drivers already present in the initial conditions is

clearly not incorporated into our attribution results for each lead time due to

this conditioning. Starting with the operational configurations of the ECMWF

forecast model, we chose to focus on three medium-range and one seasonal

forecast lead: 3 days, 7 days, 11 days and 2-4 months. These leads highlight

the following aspects of the attribution:

• 3 days (2021-06-26): a forecast very highly conditioned on the synoptic

drivers of the event, with several key drivers prescribed in the initial con-

ditions, and the rest forecast near perfectly. At this lead, our experiments

could be considered analogous to a storyline attribution framing.

• 7 days (2021-06-22): a highly conditioned forecast, with most simulated pro-

cesses mirroring reality closely. However, the shape and gradient reversal

magnitude of the block shows considerable variation in this ensemble.

• 11 days (2021-06-18, depicted in Figure 4.4): while the exceptional thick-

ness of the tropospheric block was well predicted in a large proportion of the

ensemble, the shape and associated gradient reversal was only captured

in a few members. The occurrence of the AR was well predicted, but its

location and penetration over land less so, with most members predicting

a more southerly landfall. The low soil moisture and cloud cover was well

captured by the majority of the ensemble.

• 2–4 months (2021-05-01): a considerably less conditioned forecast. For this

lead, we take the peak heat event over the whole summer period since we
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do not expect the forecast to predict the timing of the heatwave. Although

the forecasts were unusually successful at predicting elevated geopotential

height and temperatures over the summer in general, none of the peak

heat events within individual ensemble members capture all of the detailed

features of the PNW heatwave. At this lead, the ensemble can be viewed

as being near-analogous to a high resolution unconditioned climate model

simulation (though one that we know is able to represent the processes

involved in the PNW heatwave accurately).

We then perturb the boundary and initial conditions of the operational forecast

as described fully in the Methods. First, we perturb the CO2 concentrations

in the atmosphere back to pre-industrial levels of 285 ppm, similar to Leach

et al. (119). Then we remove a balanced estimate of anthropogenic change

between pre-industrial and the present-day in surface and sub-surface ocean

temperatures, SIC, and sea ice thickness (141, 230, 231) from the initial state of

the model. Perturbing the temperatures over the entire ocean depth means that

we produce forecasts that are thermodynamically consistent with the changes

in upper ocean heat content, in contrast to prescribed SST approaches (140,

150). We do not alter the land-surface, noting the high uncertainties in past

trends for indicators such as soil moisture in this region (237–239). Removing

anthropogenic influence from the ocean state and reducing CO2 levels produces

a counterfactual ‘pre-industrial’ forecast; we also apply identical perturbations

in the opposite direction to produce a ‘future’ forecast, in which the ocean state

and CO2 levels of 615 ppm correspond to approximately twice the level of global

warming experienced at the present-day.

We find that despite the large impulse applied by the perturbed initial state

upon forecast initialisation, the predictability of the heatwave is remarkably stable.

The key synoptic drivers of the heatwave present in the original operational
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forecast remain intact. There are some changes consistent with the canonical

response to global warming, including a thickening of the lower troposphere (17 )

and increased tropospheric water vapour (120) in the future forecast; and vice-

versa in the pre-industrial forecast. As such, the perturbations have not altered

the forecasts in such a way that they produce ‘different’ weather, and we can

compare our forecasts to estimate the influence of anthropogenic global warming

on the Pacific Northwest heatwave. This is consistent with Leach et al. (119),

but is not guaranteed to be the case for every weather event.

This experiment design is consistent with the perturbed CO2 experiments of

Leach et al. in another important respect: the adjustment to the new ‘pre-industrial’

or ‘future’ climate state occurs continually throughout the forecast. This adjust-

ment typically means that as the lead time increases, the estimated attributable

influence on the heatwave also increases. Interplay between dynamical noise

and attributable signal in the forecasts, both of which increase with the lead time

(short leads correspond to more confident but smaller attributable impacts and

vice-versa) is discussed further in Leach et al. The adjustment means that any

attributable impacts estimated directly from the forecasts are lower-bounds on

the true anthropogenic impact. However, we find that attributable impacts on the

heatwave are approximately linear with the coincidental global land warming level

within the perturbed forecasts across the range of leads explored, shown in Figure

4.5 and consistent with Seneviratne and Hauser (240). Hence, in addition to the

impacts estimated directly from the perturbed forecasts, we also present impacts

scaled to the global warming level within the forecast at the time of the heatwave.
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Figure 4.4: Drivers of the PNW heatwave and their predictability in the forecast

initialised 2021-06-18 (11 days). Top row: temperature anomaly fields for the PNW

heatwave in the ensemble mean, nearest member and reanalysis. Solid black contours

indicate 500 hPa geopotential height anomalies and stippling indicates regions with total

cloud cover greater than 25%. Second row: mean total column water vapour anomalies

on the 25th June. The study region of 45–52 N, 119–123 W, over which fields are

aggregated into timeseries, is indicated by the dotted rectangle. Anomalies shown are

calculated relative to the 2001–2020 period. Bottom three rows: timeseries of daily

maximum temperatures, total column water vapour and total cloud cover in each forecast

ensemble member. The solid black line shows the reanalysis timeseries and the thick

solid line shows the nearest member. The colour of each line indicates the rank of that

ensemble member in terms of the peak temperature simulated during the heatwave

period (dark grey = coolest, dark red = warmest). The solid black bar on the time axis of

each panel indicates the averaging period used for the total column water vapour maps.
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Figure 4.5: Linearity of local and global responses to imposed perturbations.

Each dot shows the ensemble mean difference between the pre-industrial and future

forecasts. The y-axis represents the difference in heatwave intensity, and the x-axis

represents the difference in global land warming level at the time of the heatwave.

Colours indicate forecast initialisation date and marker styles indicate perturbation

applied. ‘IC-observational’ use the observation-based perturbations used in the results

presented; ‘IC-CMIP6’ use initial condition perturbations derived from the CMCC-CM2-

HR4 coupled climate model historical simulation; and ‘CO2-only’ use CO2 boundary

condition perturbations only as in Leach et al. (119).
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4.6.1 Results

The results of our forecast-based approach can be presented either as the

attributable human influence on the intensity of the heatwave or the probability of

the heatwave. We find that the intensity of the heatwave is reduced in the pre-

industrial forecasts for all lead times (Figure 4.6). Due to the continual adjustment

of the forecasts to the initial condition perturbations, the attributable influence on

the heatwave peak temperature, estimated as half the difference between the

pre-industrial and future forecasts to maximise the signal-to-noise ratio, increases

as the lead time increases, ranging from 0.28 °C [0.25–0.33]† using the 3-day lead

to 0.7 °C [0.35–1.0] using the seasonal forecast. We account for the continual

adjustment of the perturbed forecasts by scaling the attributable influence by

the ratio of the coinciding global land warming level to the observed present-

day level of 1.6 °C (241). This results in a best-estimate attributable impact on

the heatwave intensity of 1.3 °C [0.5–1.9] for a current level of anthropogenic

warming of 1.25 °C (67 ). This accounts for approximately 20% of the 7 °C 2021

anomaly over previous annual maxima.

We quantify the attributable change in probability due to anthropogenic global

warming using relative risk (35), estimating the probability of observing an extreme

at least as extreme as the observed 2021 heatwave using an appropriate extreme-

value or tail distribution, and then shifting this distribution by the attributable

change in intensity for each lead time. As with the heatwave intensity, the relative

risk tends to increase with forecast lead time due to the adjustment to the initial

conditions. Our results are consistent with a linear relationship between log

probabilities and the coinciding global land warming level. If we account for this

adjustment by scaling log probabilities by the current global land warming level of

1.6 °C, we find a best-estimate relative risk of a factor of 8 times [2–30] considering

†Numbers in square brackets [] represent a likely CI (17–83%) throughout this chapter.
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all lead times, or analogously a fraction of attributable risk of 0.9 [0.5–0.97].

Using the current rate of global warming over land (67 ) we can further estimate

that the probability of observing an event at least as warm as the 2021 Pacific

Northwest heatwave is doubling every 17 [10–50] years, and will continue to do

so unless the rate of global warming decreases. Given the length of the historical

record and our estimated change in probability over this period, such an event

would be associated with a multi-decade to multi-century return period at the

present-day, thus making this doubling time very relevant for adaptation planning.

1 2 5 10 20 50
25

27

29

31

33

35

37

39

41

M
ax

im
um

 te
m

pe
ra

tu
re

 (
°C

)

Forecast lead
3 days

5-fold increase
in occurrence

probability

1 2 5 10 20 50

7 days

1 2 5 10 20 50

11 days

1 2 5 10 20 50

2-4 months

PNW heatwave

Return time (members)

future climate
current climate
pre-industrial climate
 
recent climatology
model climatology

Figure 4.6: Return-time diagram of the PNW heatwave in the operational and

counterfactual forecast ensembles. Each panel shows ensembles initialised at the

lead given above the panel. Red, grey and blue dots indicate empirical return-time plots

based on the ensemble members of the future, current and pre-industrial forecasts. The

dashed grey line shows the temperature threshold observed during the PNW heatwave.

The black dots indicate the recent climatology, based on detrended ERA5 reanalysis

over 1950–2020. The solid grey line indicates the model climatology estimated using

detrended hindcasts over 2001–2020 for the medium-range forecast, and using detrended

and bias-corrected hindcasts over 1981–2020 for the seasonal forecast. The arrow in the

left panel indicates, for illustration, the displacement along the log-scaled x-axis equivalent

to a 5-fold increase in occurrence probability.
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4.7 Discussion

The results presented here provide strong evidence of the impact of climate

change on a specific extreme event, based on a model that has been demon-

strated unequivocally to be able to simulate the event in question through a

successful medium-range forecast. Our estimates of relative risk are lower than

previous climate model-based estimates (222), albeit are not entirely incompatible

within the context of the associated uncertainties and the fact that our estimates

represent a lower bound on the impact of climate change on the heatwave (as was

the case in 119). The primary reason is that our model (unlike a typical climate

model) is capable of simulating the multiple physical factors that contributed to the

heatwave that occurred, so we are not relying on extrapolation of distributions from

physically dissimilar events. Moreover, our imposed perturbations do not include

the total sum of human influence on the climate. It is known that land surface

feedbacks are important in the development of extreme heatwaves (58, 219),

and is plausible that if we had removed the influence of anthropogenic climate

change from the initial land state in addition to the ocean state, the resulting

attribution statement might have been stronger.

Nevertheless, we argue that the forecast-based methodology presented here

represents an important advance in both attribution in general, and operational

attribution. Rather than relying on multiple lines of evidence that would each be

unsatisfactory in isolation, here we have presented a single adequate line. The

key to the adequacy of the result is the ability of the model used to represent

the event in question, demonstrated through successful prediction. This not only

means that we have increased confidence in the model’s response to external

forcing (76, 77 ), but also that the analysis is a genuine attribution of the specific

event that occurred (rather than a mixture of events that share some characteristic

like extreme temperatures, but differ in other important meteorological aspects).
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Forecast-based attribution provides many of the advantages of the storyline

approach to attribution, but can still be used to provide quantitative estimates

of the changing probability of extreme events with climate change. The use of

an operational weather forecast model demonstrates how this approach could

be easily adapted to provide an operational system for attribution in real-time

(or potentially even in advance, 207 ). Such a system would involve re-running

operational forecasts with perturbed initial and boundary conditions as in the

counterfactual forecasts we have presented here (44).

There remain a number of ways in which the forecast-based approach explored

here could be further developed. Firstly, analysis of the forecasts would be

simplified if they were started from balanced states, rather than continually

adjusting to the new initial conditions throughout the forecast. This could be

done by either including additional perturbations to the initial conditions (ie. to the

land-surface and atmospheric states, 44, 207 , 242), or possibly by perturbing

the initial state using the operational data-assimilation procedure itself. Secondly,

while here we have chosen to use the exact setup used operationally by ECMWF,

the uncertainty of forecast-based attribution statements could be reduced by

increasing the ensemble size (we note that 51 members is a relatively small

ensemble in the context of traditional attribution-specific experiments, 140, 150),

particularly for the longer, relatively less-conditioned lead times.

The focus of this study was on the attribution question, but this forecast-based

methodology could be applied to produce projections designed to inform climate

change adaptation. Analogous to our ‘future’ counterfactual forecast, which we

used here check the linearity of the climate change response, perturbations

consistent with specific levels of global warming could be applied in order to,

for example, simulate specific extreme events as if they occurred in a world of

2 °C. Such simulations of potential future extremes could be used to test the

limits of regional adaptation in a targeted manner based on impactful events that
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have already occurred (183), complementing other approaches such as Leach

et al. (205), which was designed to produce a rich set of different extreme events

rather than specific ‘grey-swan’ type events.

Concluding remarks In this study, we have used a numerical weather forecast-

based approach to determine the contribution of human influence to a specific

unprecedented extreme event. We used a state-of-the-art coupled operational

weather forecast model that was unequivocally able to simulate the event in

question, demonstrated by a successful prediction. Our perturbed initial condition

approach maintains consistency with the measured changes in upper ocean

heat content, unlike many previous approaches. We view this forecast-based

approach as synthesising the storyline and probabilistic approaches to event

attribution, keeping the event specificity of the storyline approach while still

providing meaningful estimates of the changing risk of the extreme in question.

Given that it is increasingly clear that we need to go beyond the meteorology of

event attribution, and into the societal impacts (200, 243), we suggest that our

approach would be particularly well-placed to advance this agenda, especially

in the context of extremes in a future climate.

4.8 Chapter close

In this chapter, the key takeaway is that we were able to use a relatively simple

methodology to produce counterfactual forecasts of an individual extreme weather

event, which we can then use to estimate the anthropogenic component of that

event. This methodology is very similar to that used by Pall et al. (68), and is based

on perturbing the forecast initial conditions, but has been adapted to allow coupled

weather forecast models to be used. There remain a number of outstanding issues

with the approach we have taken, most notably whether we should be — and how
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we should go about — perturbing the initial atmospheric and land-surface states

too. In terms of remaining scientific questions, a particularly interesting avenue

would be to explore how atmospheric predictability changes in counterfactual

forecasts. We have been surprised at how consistent the predictability of our

case study extreme events is, even when ‘kicking’ the model as hard as we have

done. It would be very interesting, and important for forecast-based approaches

in general, to determine if there are particular situations where predictability

breaks down in the counterfactual worlds. Unfortunately, I cannot address these

questions within the scope of this thesis, but I discuss them further, including how

they might be addressed in the future, in the thesis discussion.

Although the clear immediate application of the approach described in this

chapter would be an operational attribution service, I am particularly interested

in exploring how the same approach could be used for climate projection of

extreme events. There are additional uncertainties associated with projection,

including the socioeconomic pathway taken, and the pattern of ocean warming,

but such a forecast-based approach to projection would still confer many of the

advantages I have argued that it does for attribution (e.g. 183). This shift in focus

to climate projection fits in with the following chapter, in which I explore a novel

methodology for generating a rich variety of samples of future extreme weather

that could be used for adaptation planning. I suggest that climate projection using

counterfactual forecasts could complement the approach taken in chapter 5 by

providing understanding and information about specific damaging extremes. This

would be a natural direction for future work; as I discuss further in the discussion.
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Human influence on climate has been the dominant

cause of observed warming since the mid-20th cen-

tury ... Temperature rise to date has already resulted

in profound alterations to human and natural sys-

tems, including increases in droughts, floods, and

some other types of extreme weather ...

— IPCC, SR15, 2018

5
Attribution and projection

In this chapter, I explore the close links between attribution of extreme weather

events and their projection with climate change. I study a novel set of large-

ensemble atmosphere-onlymodel experiments to show that such large-ensembles

are necessary to generate samples of the most extreme weather events, an

understanding of which is crucial for climate change adaptation. In the closing

discussion, I consider how forecast-based attribution could be leveraged to provide

similar samples of specific future extreme weather events.
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5.1 Chapter open

This chapter arose somewhat by chance from a collaborative project between the

climateprediction.net team at Oxford and Bristol and the UK Met Office exploring

the uncertainty surrounding winter extreme events. This project was looking

for someone to carry out the formal analysis, and it so happened that at the

time I was studying the February 2019 heat event, as described in chapter 3.

Their interest in winter extremes was aligned with my own, and so I became

involved. The aim of the project was to explore questions regarding the uncertainty

surrounding the most extreme winters found within the UK Climate Projections

coupled global model simulations: could they have been more extreme?; could a

less complex atmosphere-only model produce similar extremes?; were the lower

boundary forcings particularly conducive to producing extremes?. Although this

work is a little detached from the rest of my thesis that concerns forecast-based

approaches to attribution, I think that it provides a highly complementary way of

understanding extremes. While extreme weather attribution is very specific and

concerns individual events, the work here is close to being the opposite in that it

concerns understanding the full space of possible ways in which such extreme

events can occur, and how best to sample from that space. Both approaches

have clear utility for adaptation planning.

5.2 Abstract

Recent extreme weather across the globe highlights the need to understand the

potential for more extreme events in the present-day, and how such events may

change with global warming. We present a methodology for more efficiently sam-

pling extremes in future climate projections. As a proof-of-concept, we examine

the UK’s most recent set of national Climate Projections, UKCP18. UKCP18
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includes a 15-member perturbed parameter ensemble (PPE) of coupled global

simulations, providing a range of climate projections incorporating uncertainty

in both internal variability and forced response. However, this ensemble is too

small to adequately sample extremes with very high return periods, which are

of interest to policy-makers and adaptation planners. To better understand the

statistics of these events, we use distributed computing to run three ~1000-

member initial-condition ensembles with the atmosphere-only HadAM4 model

at 60 km resolution on volunteers’ computers, taking boundary conditions from

three distinct future extreme winters within the UKCP18 ensemble. We find that

the magnitude of each winter extreme is captured within our ensembles, and

that two of the three ensembles are conditioned towards producing extremes by

the boundary conditions. Our ensembles contain several extremes that would

only be expected to be sampled by a UKCP18 PPE of over 500 members, which

would be prohibitively expensive with current supercomputing resource. The most

extreme winters we simulate exceed those within UKCP18 by 0.85K and 37%

of the present-day average for UK winter means of daily maximum temperature

and precipitation respectively. As such, our ensembles contain a rich set of

multivariate, spatio-temporally and physically coherent samples of extremewinters

with wide-ranging potential applications.

5.3 Introduction

Weather extremes are one of the most damaging hazards that society faces at

the present-day (244). Many studies have now found that anthropogenic climate

change is increasing the frequency and/or magnitude of certain types of extreme

weather, including heatwaves, extreme rainfall and droughts (245). This has

therefore resulted in a need to plan how society can adapt to the more frequent

or severe weather extremes projected to occur under continued greenhouse gas
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emissions (28, 152 , 246). In order to plan effectively, we must first understand

and quantify how extreme weather events are projected to change into the future.

In the UK, a key part of this understanding has been informed by the UK

Climate Projections (UKCP) project. The most recent iteration of UKCP, UKCP18,

was released in 2018 (247 , 248) and included a number of novel climate model

ensembles: a set of transient global simulations from coupled climate models,

with 15 simulations from a single-model PPE and 13 additional simulations from

CMIP5 models; a set of 12 regional climate model simulations; and a set of 12

convection permitting model projections. In this study, we focus on the PPE of

15 global simulations, and our analysis and results build upon the information

provided by these runs.

In particular, we are interested in how effectively the UKCP18 PPE has sam-

pled extreme weather during the UKwinter, and in exploringmethods for improving

the sampling of extremes that could inform the design of future projections. To

this end, we aim to provide proof-of-concept of a methodology for generating large

ensembles of extreme winters. The key advantage is that our ensembles provide

multivariate spatially and physically coherent scenarios of extreme weather with

high return periods for use in impacts assessment.

We first select three exceptional UK winters from the UKCP18 PPE that

occurred between 2061 and 2080 (henceforth the ‘study winters’). We then use the

SST and SIC fields from these winters to force very large perturbed initial-condition

ensembles using the HadAM4 model, which has been implemented to run in

the distributed computing system climateprediction.net at the same horizontal

resolution as the UKCP18 global simulations. This allows very large ensembles

to be produced and is possible because HadAM4 requires less computational

resources. These ensembles are intended to provide numerous extreme samples,

hence are called the ‘ExSamples’ ensembles.

This provision of many samples of extremes is similar to the UNSEEN method
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for quantifying weather extremes (236, 249). UNSEEN uses seasonal hindcast

ensembles to estimate the likelihood of ‘unprecedented’ extreme events with

considerably more confidence than possible from the observational record in

isolation. The key similarity between UNSEEN and the approach taken here is

that both are methods that aim to drill into the uncertainty surrounding the most

extreme events by providing very large ensembles of such extremes using a

dynamical model. However, there are key differences: UNSEEN uses coupled

simulations that are conditioned solely on the predictable component of the

weather at the time the model was initialised by observations, while in ExSamples,

the model is atmosphere-only and conditioned both on perturbed initial conditions

and lower boundary forcing from a climate projection. Another difference lies

in the distributed computing system used here, which enables 1000+ member

ensembles of a single winter to be produced; compared to the O(100) members

produced by operational seasonal forecasting centres.

We compare the statistics of weather extremes in these ExSamples ensembles

to both the corresponding extreme study winter, and to the whole UKCP18 PPE

2061–2080 climate distribution in order to answer several science questions:

• Is the atmosphere-only model able to produce equal magnitude extremes

to those within the study winters from the UKCP18 PPE? If the study

winter lies outside the atmosphere-only model distribution, this suggests the

importance of coupling to a dynamic ocean and other differences between

the models for producing extremes.

• Were the study winters truly exceptional, or could they have been even

more extreme?

• To what extent did the SSTs and SIC during the study winters condition the

extreme response?
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• Is carrying out this type of experiment using a computationally cheaper, but

less modern, atmosphere-only model a better methodology for sampling

extremes than increasing the size of the UKCP18 PPE?

In this paper, we first describe the models used, experiment design and

statistical methodologies performed within the study. We then present the results

of our experiments, first comparing the climate distributions of the two models over

a present-day baseline period to assess whether there are any significant biases

between them. Taking any biases into account, we compare the projections from

our three future ensembles to the UKCP18 PPE, focussing on how the extreme

tail of the climate distribution is sampled. This comparison allows us to explore

the sampling advantage given by, and influence of, the SST and SIC. The very

large ensembles created also allow us to examine the influence of the large

scale dynamics present during the study winters using a circulation analogue

approach. We then use a single ensemble member case study to highlight the

importance of large ensembles for sampling unprecedented extreme events that

cannot always be statistically extrapolated from smaller ensembles (201, 204).

Finally, we discuss the insights provided by these experiments, and how they

might inform the design of future projections; also suggesting directions for future

research that could further improve our approach.

5.4 Study design & methods

5.4.1 Models

HadGEM3-GC3.05 global climate model

In addition to the novel ExSamples ensembles, we also analyse UKCP18 global

PPE simulations of the RCP8.5 emission scenario (250). This PPE is based
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on the global HadGEM3-GC3.05 coupled ocean atmosphere model (248, 251).

This combines an 85 vertical level atmosphere model at 5/6° zonal and 5/9°

meridional resolution (N216, ~60 km at mid-latitudes) with a 75 level ocean model

at ORCA025 (1/4°) horizontal resolution. The aim of this PPE is to explore a range

of plausible model responses to climate change. The parameters were selected

on the basis of the credibility of the model response on both weather and climate

timescales (252–255). In this study we use both the final product 15-member

PPE and a 10-member subsample. The 10-member subsample consists of the

12 members that compose the accompanying UKCP18 regional climate model

projections (248), minus two members that displayed a significant weakening

of the Atlantic Meridional Overturning Circulation (256). Henceforth, we shall

refer to the HadGEM3-GC3.05 simulations analysed here as the ‘UKCP18 PPE’.

Unless stated otherwise, this refers to the 15-member PPE.

HadAM4 N216 atmospheric model

The novel simulations presented here are performed by the global HadAM4 atmo-

sphere and land surface model (257 , 258). Like its predecessor, HadAM3 (259),

it includes prognostic cloud, convection and gravity-wave drag parameterisation

schemes, a radiation scheme that treats water vapour and ice crystals separately,

and a land surface scheme. The updates in HadAM4 include a mixed-phase

precipitation scheme, parameterisation of ice cloud particle size and the radiative

effects of non-spherical ice particles, and a revised boundary layer scheme. The

version used here incorporates an upgrade to the spatial resolution (260, 261),

which matches the horizontal resolution of the HadGEM3-GC3.05 simulations

analysed here. HadAM4 has 38 vertical levels; and here the SST and sea

ice concentration (SIC) boundary conditions are taken from specific years and

members of the HadGEM3-GC3.05 UKCP18 PPE simulations.
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A key aspect of the HadAM4 simulations described here are that they are

performed on the personal computers of volunteers using the climatepredic-

tion.net distributed computing system (262–264). This system has been used

previously to run a range of Hadley Center Unified Model variants (85), including

a coupled atmosphere-slab ocean model (265), a fully coupled model (266)

and an atmosphere-only model (68) similar to HadAM4. The near thousand

member ensembles presented here would be prohibitively expensive to run

using a standard supercomputer, and so we are only able to run the bespoke

experiments presented in this study because of this distributed computing system,

and the volunteers involved. However, the constraints of this system strongly

motivate the choice of HadAM4: it is sufficiently memory-efficient that it can

be run on personal computers at the same horizontal resolution as the state-

of-the-art HadGEM3-GC3.05 model.

Henceforth, we shall refer to the HadAM4 simulations presented here as the

‘ExSamples’ ensembles. A complete description of the ExSamples ensembles,

including the selection of the prescribed SST/SIC, is given below in ‘Exper-

iment design’.

5.4.2 ExSamples experiment design

ExSamples covers six distinct sets of simulations: three future winter and three

baseline period ensembles. The process behind generating each future and

corresponding baseline ensemble is as follows:

1. Select a single winter from within the UKCP18 PPE over the 2061–2080

period. This winter is chosen on the basis of being particularly ‘extreme’;

more detail on how we selected the three future winters is given below in

‘Selecting the three ‘extreme’ study winters’. The 2061-80 period is used

as we wanted to test this proof-of-concept with a large underlying climate
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change signal; and this is the period for which there is additional UKCP18

data available: 12 km regional and 2.2 km convection-permitting model

projections (248, 267 ).

2. Use the SSTs and SICs from this winter to force HadAM4 over the November

- March period (the November of each simulation is used to spin-up the

simulation and is discarded prior to analysis). An ensemble is created

from the boundary conditions for this single winter through initial-condition

perturbations. Due to the nature of the (ongoing) distributed computing

system used to run the model (262 , 265), our target final ensemble size is

1500 members conditioned on the SST/SIC from a single winter, and in this

study we analyse all the members that are complete at the time of writing

and pass our quality control checks, which ranges from 883 to 1036 over

the three ensembles (268).

3. Create a corresponding HadAM4 baseline ensemble by using winter SSTs

and SICs from the same UKCP18 member as the selected winter over the

period 2007–2016. For each of the ten years, an ensemble of 50 members

is generated using initial-condition perturbations. This results in a target

baseline ensemble size of 500 members per future winter ensemble, condi-

tioned on SST/SICs from 10 present-day winters. Although the difference in

size between the future and baseline ExSamples ensembles is not relevant

in this study, it may be for specific user applications.

Motivation of the experiment design

In this section we outline the motivation behind our experimental design, with a

particular focus on the differences between the internal variability sampled by a

coupled model, and sampled by an atmosphere-only model. The coupled PPE in

UKCP18 samples a series of events including the most extreme ones, that arise
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from the response to anthropogenic forcing plus coupled internal variability. The

latter is due to a combination of internal variability in the ocean, the impact this has

on the atmosphere, and internal variability generated within the atmosphere itself

(269). So an extreme deviation about the long-term forced trend in a coupled

simulation might have occurred solely due to atmospheric internal variability, but

it is reasonable to expect that it is more likely than other years to have had a

contribution from ocean internal variability. Therefore, by picking three winters with

the largest deviations from the long-term climate trend, we hope to capture more

winters where the ocean has strongly influenced the extreme. In years where there

is an appreciable influence from ocean internal variability, which will be manifest

in the simulated SST and SIC patterns along with the long term forced response of

the ocean to anthropogenic forcing, then there is more potential for there to be an

additional effect from atmospheric internal variability to produce greater extremes.

Therefore, an initial-condition ensemble of atmosphere-only simulations forced

by SSTs, SIC and anthropogenic forcing from a study winter, where members

differ only by atmospheric internal variability, can be used to distinguish winters

where the ocean internal variability has played an important role from ones where

the ocean has played little role. In the former case, we would expect to sample

extremes beyond the UKCP18 extreme more often than we would by chance

from atmospheric internal variability around the long term forced response.

Definitions of key terms

There are several technical definitions we use throughout this study, which we

will define in this section.

Firstly, a ‘raw value’ is the simulated value straight from the model, as found

within the relevant data product.

‘Anomalies’ are these raw values set relative to the average absolute value
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over some reference period, in order to remove any mean model biases. For

the ExSamples simulations, we define anomalies as the raw values minus the

average over the corresponding 2007–2016 baseline ensemble members. For the

UKCP simulations, we define anomalies as the raw values minus the 1997-2026

reference period mean for each PPE member. This longer 30-year period is used

to reduce the impact of inter-decadal variability that may be present in the time

series of each member. For precipitation, we show results in terms of the ‘percent

change’ to compensate for differences in average rainfall intensity between the

two models used. Percent changes are calculated as anomalies divided by the

average raw value over the reference period (times 100%).

Finally, we use ‘deviations’ in the context of the UKCP PPE to refer to the raw

values relative to a long-term trend. Deviations are calculated as the residual

of a simple linear regression computed over time for each PPE member (i.e.

over the 2061–2080 period). Deviations therefore represent a basic estimate

of the variability about a long-term forced trend. Hence, we use deviations to

measure how unusual a particular simulated winter within the UKCP18 PPE is

compared to others when a forced trend that may vary across ensemble members

is present; and also to generate time series that can be fitted using statistical

models that assume the underlying process is stationary (though we note that non-

stationary statistical models could also be used). Deviations of the UKCP18 PPE

also provide the closest simple comparison to the atmosphere-only ExSamples

ensembles which only sample atmospheric internal variability.

Selecting the three ‘extreme’ study winters

To generate our future ExSamples ensembles, we needed to select three ‘ex-

treme’ winters from the UKCP18 PPE projections. We considered winters from

the 10-member subsample over the period 2061–2080, giving a total of 200
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candidate winters for selection. The 10-member subsample was used such that

the ExSamples ensembles generated here would be able to be directly compared

to the UKCP18 regional climate and convection permitting model projections

if desired in the future.

The variables we used to compare how ‘extreme’ each candidate winter was

were the winter (DJF) mean of daily maximum temperatures, and winter mean

precipitation, each averaged over the UK land region. Since the UKCP18 PPE

displays significant forced trends in climate over the 2061–2080 period and based

on the thinking behind the experimental design, we used the deviations of each

candidate winter as the basis for our selection; if we used anomalies we would

naturally bias our selection towards the end of the period.

Motivated by the recent winter extremes of the record hottest UK winter day

of February 26th 2019 and the record wet winter month of February 2020, we

aimed to select two ‘hot’ winters and one ‘wet’ winter. However, the method

could be applied to the winters with the coldest or driest deviations. As shown

in Figure 5.1, there is one clear candidate for each type of extreme: UKCP18

PPE member 02868 (ID numbers as 254) year 2066 as a hot winter; and member

02242 year 2068 for the wet winter. The next most extreme hot winters shown

in Figure 5.1A all had similar deviations, so we distinguished between them on

the basis of their anomalies, choosing member 01554 year 2072, which has the

highest anomaly of any of the candidate winters.
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Figure 5.1: UKCP PPE 2061–2080 deviations from forced response. A, DJF mean

of daily maximum temperatures averaged over the UK region. Coloured lines indicate

the three UKCP runs from which the study winters were chosen. The study winters

are circled and dotted horizontal lines indicate the deviation of each study winter. The

ensemble member id of the three runs is given in the legend. B, as A, but for DJF mean

precipitation.

Table 5.1 provides a summary of the study winters selected. For clarity,

we refer to the ExSamples ensembles by the abbreviations given in the final

column of Table 5.1 followed by ‘ensemble’ (so the ensemble that uses the

SST/SIC from UKCP18 member 02868 year 2066 is ‘HOT1 ensemble’, and the

corresponding baseline ensemble is ‘HOT1-B ensemble’). We use ‘aggregate

baseline ensemble’ to denote the aggregate of all three baseline ensembles. We

refer to the corresponding winters as the ensemble abbreviation followed by ‘

winter’. Finally, we refer to the UKCP18 PPE ensembles as ‘UKCP’ followed

by the period the samples are taken from.

Boundary condition (study winter) detail
Abbreviation

UKCP18 member Year Extreme type

Future projections

02868 2066 HOT HOT1

01554 2072 HOT HOT2

02242 2068 WET WET

Baseline ensembles

02868 2007–2016 - HOT1-B

01554 2007–2016 - HOT2-B

02242 2007–2016 - WET-B

Table 5.1: Summary of experiments performed for ExSamples project.

Typeset on January 5, 2023



5. Attribution and projection 129

Synoptic characterisation of the study winters

Here, we briefly describe the broad synoptic characteristics of each of the three

future winters selected. Figure 5.2 shows three key characteristics: MSLP

anomalies over the UK; SST deviations; and Arctic SICs. They display a wide

range of meteorological and climatological features: none of the extreme winters

selected are caused by very similar large-scale features.

The HOT1 winter displays a strong positive NAO pattern. Over the UK the flow

is zonal, and associated with a positive NAO pattern. In terms of the 30 weather

patterns derived by (270), this winter shares similarities with several weather

patterns, including those they numbered 20 and 23. These two patterns have

been shown to be conducive to producing record temperatures on daily timescales

(172). During this winter, the El Niño Southern Oscillation (ENSO) pattern of global

SST variability was in a strong positive phase, alongside moderately positive

Atlantic Multidecadal Variability and negative phase Pacific Decadal Oscillation

(271). This extreme winter shows some loss of Arctic sea ice compared to the

present day, though it is still mostly intact - the mean Arctic sea ice fraction

is approximately 70%.

The HOT2 winter displays a similar MSLP pattern to the first hot winter, though

the flow is slightly less zonal and the positive NAO phase is even stronger. The

mean large scale flow over the whole winter is closest to weather pattern 20

of Neal et al. (270): a strong positive NAO with associated pressure high off

the west coast of Spain. This weather pattern is associated with warm and wet

weather over the UK (172 , 272–274). There is a weak La Niña (negative) ENSO

phase ; which has previously been linked to an increased likelihood of positive

NAO (275–278). No other modes of SST variability are present. With regard

to SIC, this particular PPE member has virtually lost all winter Arctic sea ice by

2072. It has been suggested that Arctic sea ice loss may be linked with more
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persistent mid-latitude weather patterns (279, 280), though this is still a subject

of active scientific interest (281–283).

The WET winter displays a strong cyclonic south-westerly flow with a low

west of Ireland; classified as weather pattern 29. This pattern is associated with

generally warm and wet weather. ENSO is in a neutral phase during this winter;

and there are no other modes of SST variability in significantly positive or negative

phases. Of the three study winters, this one has the smallest change in sea ice

relative to the present-day; Arctic sea ice is almost entirely intact over the winter.

Figure 5.2: Synoptic characteristics of the study winters within the UKCP simula-

tions. The row titles indicate the study winter. a, DJF mean MSLP anomalies for each

winter. b, DJF mean SST deviations for each winter. Deviations are calculated for each

gridpoint timeseries over 2061–2080. c, DJF mean Arctic sea ice fraction for each winter.

The blue dashed line in Aa indicates the area used for analogue subsampling described

in 5.4.3.
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5.4.3 Statistical methods

Estimating distributions of extremes

We estimate distributions using the method of L-moments (155, 284, 285). We

use L-moments for their computational efficiency and stability. Uncertainties in

the fit distributions, their CDFs and corresponding return periods are calculated

using a 10,000 resample non-parametric bootstrap. The specific distributions

used for each variable analysed are described in the following paragraphs.

For mean DJF daily maximum temperatures (TXm) andmean DJF precipitation

rate (PRm), we use a generalised Pareto distribution (286, 287 ) fit to the upper

quartile of the sample population. When estimating CDFs and corresponding

return periods from the fit, if the value in question lies below the upper quantile,

we use the empirical CDF.

For maximum DJF daily maximum temperatures (TXx), we use a GEV dis-

tribution fit to the sample population.

For maximum DJF daily mean precipitation rate (PRx), we use a generalised

logistic distribution (155) fit to the sample population. A generalised logistic

distribution is used since the tail of the UKCP18 PPE 2061–2080 deviations

population is clearly heavier than estimated by best-fit GEV or generalised Pareto

distributions; we note that this approach to modelling block maxima of daily rainfall

has some precedent in the literature (288, 289). This issue is not a feature of the

L-Moments estimator used: a maximum likelihood estimator yields near-identical

results. It is possible that the apparent discrepancy with the GEV distribution

arises from the number of independent precipitation events per season not being

near enough to the asymptotic limit (independent event count → ∞) for classical

extreme value theory to be appropriate, as noted previously for annual daily rainfall

maxima (290), though further work is needed to determine this conclusively.
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Analogue construction

In order to assess the dynamical contributions to the extreme weather simulated

during the study winters, we use an MSLP analogue approach (182 , 291, 292).

For each future ExSamples ensemble (and each corresponding baseline ensem-

ble), we create a subsample of analogues composed of ensemble members

that have a root-mean-square error (Euclidean Distance) of less than 3 hPa

from the UKCP18 PPE study winter average MSLP over the domain enclosed

by the dashed blue lines in Figure 5.2Aa (-30:20 E; 35:70 N). This domain was

the best for explaining variance in UK temperatures and close to best for UK

precipitation of those investigated by (270). We used a 3hPa threshold as this

was the tightest constraint that resulted in analogue ensembles large enough to

infer statistics from with any degree of certainty (> 20 members in each case).

The MSLP distance based subsampling results in an ensemble of analogues in

which the mean large scale flow during the winter very closely matches the study

winter. We can then use these ensembles of analogues to estimate the dynamical

contribution and associated uncertainty to the extreme weather. ExSamples future

and baseline ensemble distributions of MSLP distance from their corresponding

UKCP winter are shown in Figure 5.3.
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Figure 5.3: PDFs of Euclidean MSLP Distance between ExSamples ensemble

members and corresponding UKCP18 extreme winters. Coloured lines show PDFs

of ExSamples future ensembles, black lines show corresponding baseline ensembles.

Dashed grey line indicates a distance of 3 hPa, the bounding limit of the analogue

selection criterion.
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5.5 Results

5.5.1 Baseline ensembles comparison

Before we can robustly compare the projections within the UKCP18 PPE and

ExSamples ensembles, we must first quantify any differences between the

representations of UK climate within the HadAM4 and HadGEM3-GC3.05 models.

We do this by comparing the 15-member UKCP18 PPE over 2007–2016 (15 *

10y = 150 samples total) with each of the three 2007–2016 ExSamples baseline

ensembles (∼ 50 * 10y = 500 samples each) in turn, and their aggregate ensemble.

Here we quantify whether the simulated climates differ using a two-sample

Kolmogorov-Smirnoff (K-S) test (293–296) at the 5% significance level on the

anomalies of the variable in question unless stated otherwise. We use anomalies

here since our main results are presented using anomalies to account for any

model mean biases (and biases between different UKCP18 PPE members), but

note if there are significant differences between the two model climate means.

Verifying the accuracy of these models against reality lies outside the scope

of this paper, but has already been studied for both the UKCP18 PPE (248)

and HadAM4 (260, 261).

For both mean and maximum DJF daily maximum temperatures over the UK

(TXm and TXx respectively), the UKCP 2007–2016 and ExSamples baseline

distributions are highly comparable (Figures 5.5, 5.6). None of the three (nor

their aggregate) ExSamples baseline ensemble distributions are statistically

significantly different from the corresponding UKCP baseline ensemble distri-

butions for either TXm or TXx anomalies. The ExSamples aggregate baseline

ensemble mean biases are +0.06 K and +0.18 K compared to the UKCP18

PPE for TXm and TXx respectively. We note that this lack of a statistically

significant difference does not imply that the two model ensembles are drawn
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from identical underlying distributions.

For mean DJF precipitation rate over the UK (PRm), we do find clear differ-

ences in the behaviour of the models. The ExSamples baseline ensembles have

a reduced winter average rainfall intensity compared to the UKCP18 PPE: a 16%

(0.61 mm day−1) lower ensemble mean. They also have a slightly increased

spread in winter rainfall. To check if these differences are due to differences in

the simulated large-scale dynamics in HadGEM3-GC3.05 and HadAM4, we use

a principal component (PC) analysis. Significant differences in these dynamics

would be a concern, as it would represent a fundamental difference between the

two models, and would make the ensemble comparisons in the main text less

meaningful. We compute the principal components (PCs) and corresponding

empirical orthogonal functions (EOFs) of DJF mean MSLP anomaly data from the

UKCP18 PPE 1997-2016 over the region bounded by 35:70 N, -30:20 E (270). We

then determine which PCs are most important in explaining UK rainfall variance

using an ordinary least-squares regression cross-validation. Regressing the top

20 (in terms of MSLP variance explained) MSLP PCs against DJF mean rainfall

averaged over the UK from the same simulations, we exclude one PC at a time,

and observe which exclusions reduce the total rainfall variance explained by the

regression model by the largest amount. Three PCs are clearly more important

than the rest: 0, 1 and 4 (which explain 43, 33 and 2.3% of the overall variability

in MSLP respectively). The regression model using these three PCs as the

predictors explains 71% of the total variance in UK rainfall. Their corresponding

EOFs are shown in Figure 5.4. We then project each EOF onto all the ExSamples

baseline simulations, and compare the distribution of the resulting pseudo-PC

with the distribution of the corresponding PC in the UKCP baseline. We find no

statistically significant differences between the ExSamples and UKCP distributions

of these PCs (Figure 5.4). Hence, we conclude that these differences in simulated

UK climate do not appear to be the result of differences in the large-scale dynamics
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of the two models over the Euro-Atlantic sector. Despite the apparent difference in

spread, none of three ExSamples baseline ensemble distributions are statistically

significantly different from the UKCP18 baseline ensemble distribution for absolute

PRm anomalies; nor is their aggregate. However, due to this discrepancy in

mean rainfall intensity between the two models, we measure projected PRm

in percent changes rather than anomalies, both in the figures presented and

analysis carried out. After converting to percent changes, the differences in

the spread of the distributions becomes relatively larger (Figure 5.7) and the

distributions of percentage anomalies are statistically significantly different. This

does not appear to arise from the specific sets of lower boundary conditions used

in ExSamples: there are no statistically significant differences between any of

the three ExSamples baseline ensembles.

Despite the differences in PRm, the two models show little difference in their

simulated distributions of the DJF maximum of daily mean precipitation averaged

over the UK (PRx). The difference in mean PRx between all the ExSamples

baseline ensembles and the UKCP18 PPE is only 4% (0.99 mm day−1). None of

the three (nor their aggregate) ExSamples baseline ensembles are statistically

significantly different from the UKCP 2007–2016 distribution for PRx anomalies.
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Figure 5.4: Rainfall variability-explaining PC histograms and EOF patterns in

ExSamples and UKCP baselines. Grey filled histogram shows the original PCs

from decomposition of UKCP18 PPE 1997-2026 MSLP. Black line histogram shows

corresponding pseudo-PCs from EOF projection onto the aggregated ExSamples 2007-

2016 baseline. The bracketed value in each subplot title states the p-value of a two

sample K-S test, P(H0 : A == B). Inset shows MSLP pattern of each EOF.
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5.5.2 Projections of future extremes

In this section we examine the future ExSamples ensembles and compare them

to the UKCP18 PPE projections. Since we are largely concerned with winters that

are extreme as a whole, rather than isolated extreme weather events within the

winters (consistent with our methodology for selecting the three study winters), we

analyse ‘hot’ winters through DJF-mean temperatures and ‘wet’ winters through

DJF-mean precipitation.

HOT1

We first address the primary question: was the atmosphere-only HadAM4 model

able to capture the magnitude of the extreme simulated in the study winter by

the coupled HadGEM3-GC3.05 model? Yes - there are four within the HOT1

ensemble that exceed the TXm value of the study winter, as shown in Figure 5.5.

However, the prescribed SST/SIC within the HOT1 simulations do not appear

to have conditioned this ensemble towards producing more extremes than would

be expected from an (unconditioned by construction) UKCP18 PPE of the same

(increased) size. This is clearly seen in Figure 5.5: the distributions of the HOT1

and UKCP 2061–2080 ensembles are very similar in the PDF subplot; and the

ExSamples return period sample histogram follows the ‘1000member’ expectation

line closely. We can conclude that despite the HOT1 winter being an exceptional

extreme within the context of the UKCP18 PPE, the associated SST and SICs

did not pre-condition the winter towards (nor away from) such an extreme.

In order to compare the conditioning (effectively the ‘sampling advantage’)

across the three ensembles, we examine the relative exceedance risk of three dif-

ferent extreme thresholds set by the following UKCP18 PPE distribution quantiles:

0.9, 0.95 and 0.99; representing 1-in-10, -20 and -100 year extremes. We do

this for both the TXm and PRm variables. We first calculate the threshold values
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that correspond to the given extremes using the UKCP 2061–2080 deviations

statistical fit (ie. the black line in Figure 5.5B). We then calculate the fractions of

the UKCP 2061–2080 and ExSamples ensembles that lie above these thresholds.

We present the results in Table 5.2 in terms of the relative risk of the given extreme

in the ExSamples ensemble compared to the UKCP ensemble. This is calculated

as the fraction of the ExSamples ensemble that exceeds the threshold divided by

the corresponding fraction of the UKCP ensemble, analogous to the ‘probability

ratios’ often used in extreme event attribution studies (25, 35). This relative

risk provides a measure of how many more samples of extremes of a particular

return period we would expect to see in the ExSamples ensembles compared

to a UKCP18 PPE-style ensemble of equal size. The quantitative results in

Table 5.2 support the picture provided by Figure 5.5: the HOT1 ensemble was

not conditioned towards producing any more extremes than expected from the

unconditioned UKCP 2061–2080 ensemble (for several thresholds it actually

appears to have been marginally conditioned away from producing extremes).

While the boundary conditions did not have any impact on the likelihood of

an extreme winter, the large-scale dynamical situation of the study winter did.

According to the analogues within the HOT1 ensemble, this specific dynamical

situation increased the chance of a 1-in-100 year winter (based on the UKCP

2061–2080 statistical fit in Figure 5.5B) by a factor of 6.2 [5.3–6.9]†. A similar level

of dynamical conditioning is seen in the baseline ensemble. The analogue-based

subsampling also suggests that the prescribed SST/SIC may actually make the

dynamical situation of the study winter less likely to occur than expected from the

baseline climatological rate: the proportion of analogues in the HOT1 ensemble

is 20% lower than in the HOT1-B ensemble (Figure 5.3). Note that this change in

analogue frequency is not significant at the 5% level. This change is reflected in

the HOT1 ensemble mean MSLP anomalies, which are negative southwest of the

†Numbers in square brackets [] represent a 90% CI throughout this chapter.

Typeset on January 5, 2023



140 5.5. Results

UK and positive northwest of the UK (the opposite pattern to the study winter).

Study winter Variable
UKCP18 quantile (return period)

0.9 (1-in-10 year) 0.95 (1-in-20) 0.99 (1-in-100)

HOT1
TXm 0.9 [0.86–0.96] 0.84 [0.77–0.97] 0.97 [0.75–2.32]

PRm 1.02 [0.95–1.08] 0.98 [0.85–1.03] 2.03 [1.0–3.78]

HOT2
TXm 4.25 [3.95–4.64] 5.71 [4.97–6.05] 9.97 [7.34–24.8]

PRm 2.93 [2.5–3.22] 3.6 [3.17–3.81] 10.08 [4.5–16.19]

WET
TXm 3.75 [3.61–4.06] 4.3 [3.67–4.7] 5.02 [3.53–10.14]

PRm 3.96 [3.42–4.22] 4.7 [4.22–4.94] 11.75 [6.17–17.14]

Table 5.2: Ratio of exceedance likelihood of three extreme thresholds between the

ExSamples future ensembles and the UKCP18 PPE 2061–2080 deviations.
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Figure 5.5: Comparing statistics of DJF mean of daily maximum temperatures

(TXm) averaged over the UK region for the HOT1 winter. A, PDFs of baseline and future

ensembles. The light orange PDF shows UKCP 2061–2080 deviations, with the distribution mean set to the ensemble

mean anomaly between 2007–2016 and 2061–2071. The dark orange PDF shows HOT1 ensemble anomalies. The light

grey PDF shows UKCP 2007–2016 anomalies. The black PDF shows HOT1-B ensemble anomalies. The dashed vertical

light orange line indicates the HOT1 winter deviation. The dark orange and black dotted bars indicate the mean and likely

range (16–84%) of corresponding analogue subsamples. The bracketed values in the legend indicate the number of

ensemble members that exceed the HOT1 winter threshold over the total number of ensemble members. B, return period

diagram. The light orange dots show the empirical CDF of UKCP PPE 2061–2080 deviations. The solid black line shows

the median generalised Pareto distribution fit. The dotted black lines indicate a 5–95% credible interval of the distribution

fit. The dark orange dashes along left y-axis indicate positions of HOT1 ensemble anomalies. C, histograms of sampled

return periods. The light orange line indicates the UKCP 2061–2080 deviations histogram, and the dark orange line the

HOT1 ensemble anomalies. The dashed light orange line indicates the best-estimate return period of the HOT1 winter

deviation. Grey contours indicate the expected histogram curve arising from a sample of size given by the contour labels.

We note that the sampled return periods are calculated using the best-estimate fit distribution shown in the

return period diagram; hence the curves in C and A are related by the transfer function indicated by the solid black line in

B.
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HOT2

Again, the magnitude of the extreme in the study winter was captured within

the HOT2 ensemble.

The HOT2 ensemble produced more extremes than would be expected from a

UKCP18 PPE ensemble of the same size (Figure 5.6A, C, Table 5.2), suggesting

that it was conditioned towards such extremes by the prescribed SST/SIC. We

can see from Figure 5.6C that the HOT2 ensemble samples extremes that we

would only expect to see within an unconditional UKCP18 PPE-type ensemble of

total sample size 10,000 (for the period 2061–2080, this would be 500 members

* 20 years = 10,000 samples). Table 5.2 supports the picture that the HOT2

ensemble was significantly primed towards producing extremes: the relative risk

of a 1-in-100 year event was 10 times greater in the HOT2 ensemble than the

UKCP18 PPE for both hot (TXm) and wet (PRm) extremes.

In addition to the SST conditioning, the dynamical situation of the study winter

also made an extreme season more likely, as shown by the horizontal lines

representing the likely range of the analogue subsamples in Figure 5.6A. Based

on the number of analogues sampled, the frequency of this particular large-

scale flow was increased by a factor of 3.6 [2.6–5.4] relative to the climatological

frequency estimated using the ExSamples baseline ensemble, which may be

due to the prescribed boundary conditions (Figure 5.3). This would fit within the

canonical picture that the negative La Niña ENSO phase is associated with

positive NAO (275, 297 ).

Typeset on January 5, 2023



5. Attribution and projection 143

100 102 104 106

Return period (yrs)

-2

-1

0

1

2

3

4

5

6

7

U
K

 D
JF

 m
ea

n 
ta

sm
ax

 a
no

m
al

y 
(°

C
)

B. TXm return period

UKCP 2061-2080
GPD fit median
GPD fit 5-95%
HOT2 winter value
HOT2 ensemble

100 102 104 106

Return period (yrs)

100

101

102

103

E
ns

em
bl

e 
m

em
be

r 
co

un
t

C. Return period histogram

  10
  30

 100
 300

1000
3000

10000
30000

100000
300000

1000000

UKCP 2061-2080
HOT2 ensemble
HOT2 winter value

-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

UK DJF mean tasmax anomaly (°C)

P
ro

ba
bi

lit
y 

de
ns

ity
A. TXm PDF

UKCP 2061-2080 (4/300)
HOT2 ensemble (107/883)
UKCP 2007-2016 (0/150)
HOT2-B ensemble (0/499)
HOT2 ensemble analogs (45/147)
HOT2-B ensemble analogs (0/23)
HOT2 winter value

Figure 5.6: Comparing statistics of DJF mean of daily maximum temperatures

(TXm) averaged over the UK region for the HOT1 winter. As Figure 5.5, but for the

HOT2 winter.
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WET

Finally, we examine the WET winter extreme. As in both hot winters, the magni-

tude of the extreme within the study winter lies within the range of the WET ensem-

ble.

As in the HOT2 ensemble, the prescribed SST/SIC have conditioned the

WET ensemble towards producing more wet extremes than would be expected

from an unconditioned ensemble, as shown by the histogram of sampled return

periods and shifted PDF compared to the UKCP 2061–2080 PDF in Figure 5.7.

This is consistent with the quantitative estimates in Table 5.2, which suggest

that the WET ensemble was 5 times more likely to produce a 1-in-20 year wet

(PRm) extreme, and 12 times more likely to produce a 1-in-100 year extreme.

We note that this does not appear to be related to structural differences in the

representation of precipitation between the two models, since extremes are not

consistently made more likely in the relatively unconditioned HOT1 ensemble,

as quantified in Table 5.2.

An analogue-based dynamical analysis shows that, once again, the large-scale

circulation pattern present in the study winter was important for the development of

the extreme rainfall that was simulated, consistent with previous weather pattern

studies (Richardson et al., 2018, 2020). Interestingly, conditioning on the study

winter dynamics appears to have a smaller influence on the WET ensemble than

on the corresponding baseline: the difference between the distributions implied

by the PDF and by the dotted bar is much greater for the baseline simulations

(black) than for the future simulations (dark blue) in Figure 5.7A. This may be

due to the SST/SIC conditioning in the future ensemble.
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Figure 5.7: Comparing statistics of DJFmean precipitation (PRm) averaged over the

UK region for the WET winter. As Figure 5.5, but of DJF mean precipitation averaged

over the UK region for the WET winter.
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5.5.3 Sampling record-shattering subseasonal events

Although this study is largely concerned with extremes that occur on seasonal

timescales, the novel large ensembles created here also provide a set of extremes

occurring on shorter weather timescales. Such extreme weather events are of

particular importance for decisions surrounding adaptation to climate change. The

‘H++’ scenario concept has been developed to inform such adaptation decisions by

considering plausible low likelihood but high impact events that might test the limits

to adaptation (298–300). Here we consider how the ExSamples methodology

could be used to supplement the UKCP18 PPE with regard to such H++ scenarios

by examining a particular ExSamples ensemble member as a case study.

This case study is an example of extreme DJF maximum of daily maximum

temperatures averaged over the UK (TXx as previously defined). Figure 5.8

shows a return period diagram of UKCP 2061–2080 TXx deviations (centred on

the mean anomaly for 2061–2071 over 2007–2016), plus a fitted GEV distribution

and associated uncertainty. GEVs are often used to statistically model block

maxima of climate variables; and therefore infer information about the likelihood

of such extreme events (301). However, this statistical approach appears to have

inadequately accounted for the risk of very high impact events, an issue noted

previously by Sippel et al. (302). The dashed dark orange line in Figure 5.8 shows

the TXx for HOT1 ensemble member c0qu, which lies considerably above (by

2.3 °C) any UKCP18 PPE samples. This event is roughly 5 standard deviations

above the mean of the UKCP18 deviations distribution shown in Figure 5.8. This

is an example of a potential ‘record-shattering’ event as discussed by Fischer et

al. (2021). Since the particular GEV fitted to the UKCP18 deviations is type III

(286), it sets an upper bound on TXx, consistent with previous studies of extreme

heat events (201). However, in a 100,000 member resample bootstrap, the UKCP

inferred GEV upper bound is only above this most extreme member in 0.3% of
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resamples. This does not appear to be due to a mean bias between the two

models: they display near-identical climatological distributions of TXx over the

baseline period. However, there are a number of reasons that may explain why

this extreme lies well outside the CIs from this statistical extreme value analysis

of the UKCP18 PPE. These include: the SST/SIC pattern prescribed being

highly conducive to these kinds of hot weather extremes noting that the extreme

value analysis is not conditioned on SST/SIC patterns; potential differences in

the tails of the TXx distributions simulated by HadAM4 and HadGEM3-GC3.05;

and differences in the response of those tails to climate change. We note that

this exceptional TXx extreme arises from a very similar set of meteorological

circumstances (not shown) to the record-breaking winter temperature extreme

that occurred over Europe in 2019 (118, 172). However, we believe that the key

point to take away from this is not necessarily the specific estimated likelihood of

these extreme weather events, but that the methodology used here could help

to provide multivariate spatially, temporally and physically coherent examples of

the kinds of H++ scenarios used to consider the limits to adaptation.
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Figure 5.8: Examining statistics of subseasonal extreme weather events. As return

period diagram of Figure 5.5, but of DJF maximum of maximum daily temperatures

averaged over the UK region for the HOT1 winter. The statistical model indicated by the

solid and dotted black lines is a GEV distribution fit over the entire population of UKCP

PPE 2061–2080 deviations, which are shown as light orange dots. Note the dotted lines

indicate a 0.5–99.5% CI in this instance. The dashed dark orange line shows the value

of the most extreme member within the HOT1 ensemble.
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5.6 Discussion

The first science question we aimed to answer through our experiments is also

the most straightforward: is the atmosphere-only HadAM4 model able to simulate

the highest extremes observed in the UKCP18 HadGEM3-GC3.05 PPE, or do the

differences between the models preclude HadAM4 from producing such events?

The answer to this is a confident yes. We have found that HadAM4 is not only

able to closely reproduce the present-day climate statistics of the more complex

model (after correcting the bias in seasonal mean rainfall, which may be due to

model parameterisation), but is able to produce winters just as extreme as the

selected study winters when driven by the SST and SICs from those winters.

The question that naturally follows on from this is: were the selected winters

genuinely exceptional events, or could they have been more extreme? Despite

the fact the selected winters were already far into the tails of the projected climate

distribution from UKCP18, the SST/SIC forced ExSamples experiments show

that higher extremes are possible. In the two winters pre-conditioned by the SST

and SIC patterns, there were more of these higher extremes than in the winter

where the ocean pattern did not contribute to the extreme. Since the ExSamples

ensembles are forced by the same lower boundary conditions as the study winters,

they cannot be used to determine the unconditional likelihood of these higher

extremes, but they do provide plausible and physically consistent scenarios in

which such higher extremes might be generated.

We suggest that the ExSamples methodology is more efficient at sampling

extremes than the simplest alternative approach of increasing the UKCP18

PPE size. We have found that overall, for both hot and wet extremes, on both

seasonal and daily timescales, the future ExSamples ensembles were able to

produce many more samples of extreme winters than would be expected if we

simply increased the UKCP18 2061–2080 ensemble to be the same size as
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the ExSamples ensembles. Across the three future ExSamples ensembles, for

mean temperature we sampled 44 winters above the most extreme winter in

UKCP18, and 106 for mean precipitation (using re-centred deviations to define

the UKCP18 maxima as shown in Figures 5.5-5.7). However, there is an important

caveat to bear in mind here: the SST/SICs taken from the selected study winters

clearly ‘primed’ the corresponding ExSamples ensembles towards producing

relatively more extremes in two of the three cases (HOT2 and WET), but not in

the third (HOT1). For the two primed study winters, the benefits of the ExSamples

methodology is clear: we get many more samples of extreme winters than would

be expected from an unconditioned ensemble of the same size (like the UKCP18

PPE). In particular, the HOT2 ensemble produces 10 times more samples of

1-in-100 year TXm and PRm events than would be expected for an equal-size

UKCP18 PPE (from Table 5.2). For the third study winter the overall benefits to

sampling efficiency are less clear. However, this winter generated a TXx extreme

that far exceeds anything seen in the UKCP18 PPE (and indeed anything that

would be expected to be seen even if the UKCP18 PPE was considerably larger,

based on a statistical extreme value analysis).

In addition to the methodology presented here, the future ExSamples ensem-

bles explored here represent a data set that may be of considerable interest to

the wider scientific community, since they provide multivariate spatially coherent

information for climate projections of very high return period extremes. These

ensembles, and in particular the physically plausible simulations of extremes

within, could be used in the context of ‘H++ scenarios’ to explore and understand

the potential impacts of climate change, and the limits to adaptation planning

(300). The efficiency with which we have been able to sample extremes with

the ExSamples methodology means that we can provide a much richer set of

future extreme winter events than exist within the UKCP18 PPE. This rich set of

events could be used, for example, by impact modelling, to more fully explore
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the space of impacts that may arise from climate change.

A final topic that this study touches on is the use of atmosphere-only versus

coupled models (156, 157 , 303, 304). Here, we have explored both present-day

baseline and projected climates from a coupled model (HadGEM3-GC3.05) and

a comparable atmosphere-only model (HadAM4). Whilst atmosphere-only simu-

lations have been found to have lower variability of ocean surface air temperature

(303) and could potentially exhibit lower variability in other quantities, we have

not found this to be the case for the mean UK temperature and precipitation

studied here (though definitive proof of this would require us to repeat the

ExSamples exercise with the same atmospheric model as was used in the coupled

runs). For the baseline period, the atmosphere-only model did not systematically

underestimate the internal variability of the seasonal (or daily) timescale extreme

variables considered here (Figures 5.5-5.7). Since we only have ExSamples

future ensembles for three different sets of SST/SIC conditions, it is more difficult

to quantify whether the projected internal variability is significantly different from

the coupled model simulations, but the climate distributions of the relatively

unconditioned HOT1 ensemble suggest that this is not the case.

However, even if internal variability appears to be well-represented in our

atmosphere-only simulations when compared to the predecessing coupled sim-

ulations, this does not mean that potential issues are entirely avoided. Since

prescribed SSTs have been found to enhance the thermal damping of the atmo-

sphere (305), it is possible that if the ExSamples ensemble had been coupled

then even more extremes may have been sampled. We note, however, that

fully coupled simulations would represent an experimental setup that explores a

somewhat different set of questions than can be answered using the ExSamples

ensembles produced here. The second potential issue could arise if future

research looked into the drivers of specific extreme cases within the ExSamples

ensemble. Since the prescribed SSTs used were taken from a coupled model

Typeset on January 5, 2023



152 5.6. Discussion

in which they are produced by the combined influence of ocean circulation and

ocean-atmosphere interaction, then some of the resulting SST patterns may have

been driven (at least in part) by the atmosphere. If those same patterns then

force particular atmospheric features in the atmosphere-only runs, where the

SSTs can influence the atmosphere but not the other way round, then using the

ExSamples simulations to investigate the physical causality of certain outcomes

could be misleading. This is not a unique issue of the ExSamples experimental

setup, however, but rather an issue of atmosphere-only modelling in general. It is

possible that these two potential issues could be at least partly mitigated through

the use of a slab ocean model such as that developed by (306). This has been

shown to increase the variability of precipitation extremes by permitting rapid

ocean-atmosphere interactions to influence atmospheric processes. However,

unlike a fully coupled model, this slab model setup is of a comparable cost to the

atmopshere-only model used here, and would therefore potentially be suitable

for carrying out similarly large ensembles.

If the ExSamples methodology were to be repeated, for the purpose of

sampling additional extremes, being able to pre-select study winters (i.e. lower

boundary conditions) that condition the resulting ensembles towards extremes

would be of considerable value. Here, we simply chose three of the most extreme

winters within the UKCP18 PPE, expecting that these would be more likely to

produce extremes than a randomly selected winter. This turned out to be the case

for two of the winters we chose, but not the third. Understanding what features of

the prescribed SST and SIC patterns caused the ensembles to be conditioned

towards extremes would be a very useful direction for further study to take. If

future research were able to provide evidence of such features, then we could pre-

select study winters more intelligently, and therefore sample extremes even more

efficiently. There has been some previous work done on the subject of how SST

patterns affect seasonal mid-latitude weather that could potentially be used in this
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manner (Baker et al., 2019). On a related note, our methodology could be used to

understand real extremes in the present-day by driving the model with observed

rather than simulated SST/SICs. This would allow some exploration of whether

extremes that have already occurred might have been even more extreme.

Another research direction that could be taken would be to attempt to extract

additional information from the existing set of events provided by the ExSamples

ensembles presented here. Although the ~60 km (N216) resolution of both the

ExSamples ensemble and UKCP18 PPE is very competitive within the context

of the current generation of climate models (188, 307 ), it is still relatively coarse

for providing assessments of weather events on small spatial or temporal scales.

For example, catchment-scale hydrological modelling would require much higher

spatial resolutions (308). Hence, we suggest that the ExSamples ensembles

could be statistically downscaled (or dynamically downscaled using a regional

model if suitable model output was stored to drive thesemodels) in order to provide

information that is more relevant for localised climate change adaptation planning.

Such downscaling could result in an extensive set of extreme local scenarios to

complement the raw model output that provides a corresponding set of extreme

national scenarios. For downscaling to be trustworthy, the large-scale dynamical

features of the input simulations must be an accurate representation of reality. The

analysis that we have performed here suggests this is the case: as demonstrated

in the Supplementary Information, the large-scale dynamics over the Euro-Atlantic

sector within HadAM4 very closely replicates those within HadGEM3-GC3.05.

5.7 Concluding remarks

In this study we have presented a new set of ~1000-member ensembles of

simulations from the HadAM4 atmosphere-only model, run on the personal

computers of volunteers using a distributed computing system, to allow the study
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of extreme weather events. The lower boundary conditions of these ensembles

were taken from three of the most extreme winters within the UKCP18 PPE

between 2061–2080, and they therefore represent a comprehensive sampling

of atmospheric internal variability conditioned on the prescribed SST, SIC and

anthropogenic forcings. Corresponding ensembles for a 2007–2016 baseline

period were also run to enable the HadAM4 model to be verified against the

coupled HadGEM3-GC3.05 model used in UKCP18.

We find that the HadAM4 ensembles are able to simulate winters with tempera-

ture and precipitation anomalies that exceed the magnitudes of the most extreme

examples within the UKCP18 PPE. Conditioning from the prescribed SST/SICs

present in two of the three ensembles resulted in significantly more extremes being

sampled by these ensembles than would be expected from a UKCP18 PPE-style

ensemble of the same size: around 10 times more 1-in-100 year extremes.

The computational efficiency with which our methodology was able to sample

such extremes provides a compelling argument for how it could be used to

support future climate projection efforts. The ensembles that we have presented

here could themselves be used to provide multivariate spatially, temporally and

physically coherent examples of extreme weather in the context of H++ scenarios

and for adaptation planning. Although we have focussed on the UK in this

study, our methodology could be applied to other regions, subject to proper

model validation (248, 261).

5.8 Chapter close

This work has described and demonstrated a novel methodology for producing a

large number of samples of extreme winters. I suggest that the primary outcome

lies in demonstrating how this method is able to produce a rich variety of extreme

events at a relatively low computational cost. This rich variety of multivariate
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extremes could be used to estimate potential limits to adaptation, which are

relevant to policymakers. However, it is important for me to emphasise that this

is a proof-of-concept, rather than something to be used immediately. Although

HadAM4 has been shown to validate well in the winter, further model validation

focussed on extreme events would be necessary to increase confidence in

the realisticity of the future samples. In addition, providing samples at several

global warming levels would further increase the information provided by this

methodology. The clear outstanding science question is whether it is possible to

predict which lower boundary conditions from the coupled model will condition the

atmosphere-only simulation towards extremes, and understanding the physical

reasons why. This would enable the ExSamples methodology to produce samples

of extremes even more efficiently.

If I now consider the thesis as a whole, the work presented in this chapter

provides a contrast to the others: while forecast-based attribution concentrates

on understanding single weather events as reliably and in as much detail as

possible, the ExSamples approach aims to span the uncertainty associated with

an extreme in order to produce as broad a range of plausible extremes as possible.

I argue that both are important: in order to effectively adapt to climate change,

we need to understand how specific extreme weather is changing in as much

detail as possible; but we also need to quantify the breadth of possible future

extreme weather to avoid damaging surprises. I discuss how forecast-based

approaches could be used for projecting future extremes in more detail in the

Discussion; but believe that the methodology presented in this chapter could

provide highly complementary information in a computationally efficient manner

to such a forecast-based approach.
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Human-induced climate change is already affecting

many weather and climate extremes in every region

across the globe.

— IPCC, AR6, 2022

6
Discussion

In this final chapter, I consider this thesis as a whole. Starting with a brief

overview of everything that I have covered within the science chapters, I then

move on to discussing related precedent works, including how each is similar to

and different from my own, and the advantages and disadvantages of various

approaches. I examine the limitations of the forecast-based approach to attribution

that has been my focus — and how these limitations could be overcome in further

work. I expand this discussion of future research directions to include potential

applications beyond the attribution of extreme weather. I end the chapter, and

thesis, with some closing thoughts.
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6.1 An overview of this thesis

I started this thesis with a discussion of the precise question that this thesis would

be examining, posing it as: ‘how has human influence on the climate affected both

the probability and intensity of specific extreme weather events?’. Following this, I

provided several reasons why this is an interesting and useful question to answer,

including: quantifying the fraction of damages from individual weather events that

GHG emitters are liable for in both tort law and loss and damage frameworks;

engaging the public in climate change research and impacts; improving our

understanding of extreme weather to improve both adaptation planning and

the models we use to simulate such weather. I then described the two most

common frameworks that have previously been used to answer this question:

the probabilistic and storyline approaches. Both of these approaches have

advantages and disadvantages, but I suggested that they could be synthesised

and complemented through the use of counterfactual weather forecasts. One

way of achieving such a forecast-based approach is the main contribution of

this thesis to the literature. I concluded with a description of the underlying

physics behind heatwaves, and the basis for how they are being affected by

human influence on the climate.

In chapter 2 I presented an attribution analysis of the 2018 heatwave in

Europe. This analysis used a conventional probabilistic approach to explore

whether two seemingly conflicting quantitative attribution results publicised in

the media could be reconciled by digging into the technical details. I found

that this conflict could indeed be largely resolved when considering the different

temporal scales used to define the event in those previous results. This analysis

provided an introduction to the methods used widely in probabilistic attribution.

However, it also resulted in a number of questions about the approach, concerning

model validation and the specificity of the analysis: in particular, whether I could
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genuinely claim to be attributing the specific 2018 event given that none of the

meteorological context had been taken into account in the probabilistic approach

followed in this chapter. One apparent solution to these questions would be

to use weather forecast models that had successfully predicted the event in

question to assess the human contribution to the event — as opposed to the

climate models that are commonly used. I developed this idea of forecast-based

attribution in the two following chapters.

Chapter 3 presented the first example of my forecast-based approach to

attribution. Motivated by the remarkably accurate forecast of an exceptional

heatwave in February 2019 by the operational ECMWF ensemble prediction

system, I perturbed the CO2 concentration in this system back to pre-industrial

levels to examine how the heatwave would be impacted. I argued that — in

addition to the high-resolution of the forecast model — this successful prediction

is a key feature of the forecast-based approach, as it largely guarantees that the

model is able to represent all the key processes that drove the heatwave. An

important limitation of this study is that it only addressed the contribution of a

single component of anthropogenic influence on the climate: the direct radiative

impact of increased CO2 concentrations above pre-industrial levels. However,

despite this limitation, I still found a detectable CO2 signal in both the intensity

and probability of the heatwave. One surprise was how rapidly the signal was

detectable within the forecasts: it could be detected even at a very short lead

of 3 days. Another interesting feature was how stable the predictability of the

heatwave was: despite the relatively large perturbation made to the forecast

boundary conditions, it remained predictable in both reduced and increased CO2

counterfactual forecasts. Although there were several possible directions for

future work, I identified that trying to produce a more complete estimate of human

influence on an individual event was the most important one, and so the following

chapter explores doing exactly that.
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The 2021 Pacific Northwest Heatwave is the case study used in chapter 4.

This was a truly unprecedented event that not only shattered local temperature

records by several degrees, but also presented conventional attribution methods

with a considerable challenge. Statistical models often suggested that the event

should have been impossible, and it was unclear if climate models were even

able to simulate such an extreme event. I argued the reason for these challenges

were the very specific processes that drove the heatwave: an atmospheric

river coincided with an anticyclonic block, providing both diabatic and adiabatic

heating to air parcels that then descended to the surface and heated further

through soil-moisture feedbacks and insolation. This optimal combination of

processes had likely not been seen before in the historical record — hence the

difficulty faced by statistical approaches. However, the event was incredibly

well-forecast given this context, with suggestions of such extreme temperatures

appearing over 10 days before they actually occurred. I took the same ECMWF

model used in chapter 3, and modified both the CO2 concentration boundary

conditions and the initial ocean conditions to produce an initial state consistent

with a climate without human influence. These perturbations resulted in a pre-

industrial counterfactual forecast; and I also applied exactly opposite perturbations

to produce a ‘future’ counterfactual forecasts. These counterfactual forecasts

indicated that the heatwave was made at least 8 [2–30] times more likely due

to climate change — and that this risk is doubling every 17 [10–50] years at

the current rate of global warming. Although there remain scientific challenges

for this approach to overcome, this chapter demonstrated that an operational

attribution service based on counterfactual forecasts is not far out of reach, and

could provide extremely valuable information for adaptation planning.

Chapter 5 provided a contrasting but complementary study. While extreme

event attribution is typically backward-looking, examining changes in weather

since the pre-industrial period, here I looked at the projection of climate extremes.
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And while extreme event attribution focuses in on a single specific event, here I

explored how the full space of uncertainty in all such extremes could be sampled

from. I performed this exploration upon a novel set of large-ensemble atmosphere-

only simulations forced by lower boundary conditions from three of the most

extreme winters simulated within the UKCP18 coupled global runs. These ∼1000-

member ensembles allowed me to better understand the uncertainty surrounding

these extreme winters, including to what extent they were forced or whether

they were driven by atmospheric internal variability. They demonstrated that the

atmosphere-only model used was not only able to simulate such extremes, but

also to produce extremes beyond anything found in UKCP18 — even beyond

what might be expected from statistical extrapolation. I suggested that this

computationally efficient methodology could be used to provide a rich multivariate

set of spatially, temporally and physically coherent samples of extremes, and

that such a set could provide valuable information for adaptation planning and

designing high-impact low-likelihood scenarios of future weather. It could be

complemented by specific ‘Tales of future weather’: counterfactual weather

forecasts of damaging historical events as if they occurred in a warmer world,

analogous to those in chapter 4. Such Tales could provide detailed information

about the future risk from and physical understanding of specific extremes, while

the large ensembles in this chapter could provide broad information about the

range of future extremes. I discuss this further below in the context of future

research directions.

6.2 This thesis in the context of previous work

First approaches using weather forecast models Forecast-based attribu-

tion as an idea is not novel to this thesis, though this thesis does extend the

approaches taken previously. One of the main reasons why weather forecast
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models have been used previously is their high resolution — though simply

using weather forecast models is not necessarily the same as using weather

forecasts. Such high resolution is required for representing localised dynamical

weather extremes such as hurricanes or convective storms. Possibly the first

study to explicitly use a weather forecast model for the purpose of attribution

was Lackmann (169) *. Lackmann used the Weather Research and Forecasting

(WRF) model (309) in a free-running triply-nested setup driven by reanalysed

SSTs to analyse how Hurricane Sandy may have evolved differently in both

pre-industrial and future climates. The counterfactual climate forecasts were

produced by perturbing the initial and boundary conditions in line with changes

estimated from CMIP3 GCM simulations (310). With this experiment design,

Lackmann showed that Sandy’s intensity would have reduced and its track would

have shifted southward, conditioned on its predictable component at a lead of

around 3 days. An analogous design was used by Meredith et al. (164), who

used a similar triply-nested WRF model setup to examine the highly nonlinear

influence of SST warming trends on a convective extreme near the Black Sea.

Meredith et al. also used perturbed SSTs for their counterfactual simulations, but

did not perturb other initial or boundary conditions. They additionally nudged the

large-scale circulation to keep the dynamics consistent between their simulations.

The pseudo-global warmingmethod The approach taken by Meredith et al.

falls under a broad umbrella of approaches often referred to as ‘pseudo-global

warming’ experiments (311). In the basic version of this experiment design, a

regional model is nested within some time-evolving lateral boundary conditions

(atmospheric and sea surface). These boundary conditions are then modified in

line with global warming to examine the influence on the (freely-evolving) region

*Although Hoerling et al. (65) did make use of weather forecasts in their storyline analysis of

the 2011 Texas combined heatwave and drought, these were not used for attribution explicitly,

but rather to explore the predictability of the event.
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of interest. This can be used to study weather extremes or any other scenario of

interest. The boundary condition modification in Schär et al. is similar to that of

Lackmann, but the latter allows the atmospheric conditions in the outer domain

to evolve freely after initialisation. On the other hand, Meredith et al. did not

modify the atmospheric boundary conditions, but instead nudged them towards

the scenario of interest. The pseudo-global warming approach was used in a

study examining the impacts of Typhoon Haiyan by Takayabu et al. (312). They

used a chain of successively more granular models, starting from a 60 km global

ensemble forecast model, and ending at a 740 m ocean wave and storm surge

model. Their use of an operational ensemble forecast system is interesting,

though they did not focus on the probabilistic aspect of the system, instead using

it to develop a plausible worst-case scenario of impacts from the typhoon. More

recently, the related ‘hindcast attribution method’ has been developed, often to

study convective dynamical events (209). This method represents a specific

application of the pseudo-global warming approach in which either a regional

model is forced by lateral boundary conditions from reanalysis of an extreme or a

variable-resolution global model hindcast is used. The initial and lateral boundary

conditions are then modified to be representative of a world without human

influence in order to assess the conditional impact on the event in question. This

hindcast attribution method was first established by Pall et al. (196) to examine

anthropogenic contributions to an exceptional Colorado rainfall event in 2013.

It has since been used extensively to study human influence on hurricanes by

Michael F. Wehner and colleagues (168, 242 , 313). At this point, it is worth

mentioning a few differences between the pseudo-global warming and hindcast

attribution methods and the forecast-based approach set out here. Although all

of these studies employ ensemble simulations, and some do make probabilistic

statements (196), the reliability of the models used is not assessed and therefore it

is tricky to determine the robustness of such probabilistic statements (62 , 94). This
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is a key limitation since it means that changes in probability cannot necessarily

be accurately estimated from the ensembles (since the quantiles of individual

ensembles may not represent the true outcome probabilities). In terms of the

nesting of models, if a reanalysis-forced regional model is used, then climate

change responses and interactions outside the domain are not taken into account,

which may be of importance for particular events. If a variable-resolution global

model is used, biases present in the coarsest domain will be inherited and may

be relevant to the simulation within the study domain. Finally, the prescribed-SST

designs used in all the studies mentioned preclude ocean-atmosphere interactions

that may also be important in the development of extremes such as hurricanes.

The subseasonal to seasonal forecast approach at BOM Certainly the

most similar prior work to the forecast-based approach presented here is that

of Pandora Hope and colleagues (165–167 , 207 , 208). In Hope et al. (165), a

new method of extreme weather attribution was presented involving reinitialised

coupled seasonal forecasts from the Australian Bureau of Meteorology’s POAMA

model. Starting from the operational forecast model at the time in 2014, they first

altered the CO2 concentrations from the 2014 level of 400 ppm to a level consistent

with the conditions in 1960 of 315 ppm. They then estimated the anomaly required

to remove the ocean’s response to these two distinct atmospheric concentration

levels by integrating two sets of free-running coupled simulations for 30 years.

Two ‘recent’ climate simulations were intialised from observed initial conditions

in 2000 and 2010, and two ‘1960s’ climate simulations from 1960 and 1970.

An average over the last five years of the sets was used to create temperature

and salinity perturbations consistent with the modelled ocean’s response to the

different CO2 levels. They found that the probability of the record warm Australian

spring of 2014 was significantly reduced in these 1960s condition forecasts. Hope

et al. (166) further extended this methodology by also modifying the initial land-
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surface and atmosphere conditions of the model. The land-surface (soil moisture

and temperature) and atmosphere (humidity and temperature) perturbations are

determined in a manner similar to the ocean, but with much shorter integrations

of 2 months over each of the 15 years spanning 2000-2014 and using either

true observed initial conditions or the modified CO2 and ocean conditions as

in Hope et al. (165). This complete perturbed CO2-ocean-atmosphere-land

seasonal forecast attribution system is described by Wang et al. (207 ). It was

used by Hope et al. (166) to assess another record-breaking heat event, and

by Hope et al. (167 ) to examine anthropogenic influence on the precursors of

fire-weather. It now forms the basis for a near real-time ‘Event Explainer’ service,

as described by Hope et al. (208).

There is evidently considerable overlap between the BOM approach described

above and in Hope et al. (208) (henceforth H22) and themethodology developed in

this thesis throughout the course of chapters 3 and 4 (henceforth L22). Both make

use of weather forecast models to analyse extreme events within the limit at which

they are predictable within those models. Both perturb the initial and the boundary

conditions of the weather models to assess the impact of human influence on such

extremes. However, there are a number of clear differences. H22 has previously

focussed on subseasonal to seasonal forecasts and timescales, while L22 has

concentrated on shorter medium-range timescales. This different temporal focus

impacts the types of event that can be analysed by each approach — with H22

able to examine events taking place over periods longer than the integration length

of medium-range forecasts, and L22 able to study sharper and more short-lived

events that may not be predictable on seasonal timescales. For example, the

H22 approach is suited to analysing monthly mean temperatures (165); while

L22 more suited to analysing heatwave peak temperatures as in chapter 4. The

longer timescales involved in seasonal forecasts also mean that model drifts may

be important, something that I found in chapter 4. The atmospheric model used in
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the POAMA seasonal forecast system in H22 is coarse, at a horizontal resolution

of 250 km. This coarse resolution means that this model will share the difficulties

faced by many coupled climate models when it comes to simulating extreme

events. An upgraded system is under development at a resolution of 60 km, but

this is still insufficient for simulating some key classes of extreme weather such

as hurricanes (208, 313). On the other hand, the operational ensemble prediction

system at ECMWF used in L22 has a resolution of approximately 18 km. In terms

of the ‘completeness’ of the estimated human influence, H22 is ahead of L22.

Thus far, L22 perturbs both the initial ocean and sea-ice conditions, and the CO2

concentration boundary conditions. This is analogous to the perturbations made

by Hope et al. (165, though they did not perturb the sea ice). However, in the

most recent studies, H22 also perturb the land-surface and atmosphere, thus

allowing for a more complete estimate of human influence on the extreme event

of interest. In particular, leaving the atmosphere unperturbed requires it to adjust

over the course of the forecast, which is a clear limitation on the interpretation

of results from this approach. I discuss this limitation and potential methods to

resolve it below. It would be very desirable for the two approaches to reach a point

at which they were consistent enough to start providing multi-model attribution

results, in order to further increase the robustness of forecast-based statements.

Spanning uncertainty in climate projections of extreme weather Al-

though the focus of this section is looking at work related to the forecast-based

approach to attribution that I have developed, here I also briefly discuss some prior

studies done on projections of climate extremes relevant to chapter 5, particularly

on how to capture the associated range of uncertainty. I have split these into two

broad groups for clarity: dynamical and statistical modelling studies.

The primary challenge posed by climate extremes is that they are, by their

nature, rare, and therefore typically require a considerable amount of data to
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make inferences about. One increasingly common approach to addressing this

requirement is to use large ensembles of climate model simulations. These may

be multi-model ensembles, such as the CMIP ensembles (142 , 188); single

model initial condition large ensembles, which are used to separate internal

climate variability from forced responses (314); PPEs, such as the global UKCP18

ensemble used in chapter 5 (247 ); or combinations of the above that aim to span

as complete an uncertainty space as possible (265, 266). All of these types

of large ensemble explore slightly different components of climate projection

uncertainty, and can clearly answer a range of useful questions about future

climate extremes. However, none are designed specifically for the study of

extremes in the same way that the ExSamples methodology described in chapter

5 is. The ExSamples method also explores a different component of uncertainty

to each of these large ensemble approaches: atmospheric internal variability (as

opposed to combined atmosphere-ocean internal variability). The most similar

approach to ExSamples, unsurprisingly, is that which it was based on: the

very large atmosphere-only simulations performed by climateprediction.net for

attribution of extreme weather (68, 315). However, unlike ExSamples, all the

previous work using this approach simulated the present and the past, rather than

the future. One interesting recent approach developed explicitly for studying and

simulating the most extreme events possible is ‘ensemble boosting’. As described

by Gessner et al. (201), ensemble boosting locates the most extreme events in pre-

existing climate projections, and then reinitialises an initial condition ensemble

a few days before, in order to see if it could have been even more extreme.

Ensemble boosting could therefore be very useful for delving into what the

maximum possible extremesmight be in the future— but is not designed to provide

the same richness in the variety of future extremes that ExSamples explores.

The main alternative to such an extreme-specific methodology as ExSamples

is to apply statistical models to existing climate model projections (such as
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the large ensembles described above). One such alternative would be the

extreme value-based approach of Brown et al. (301). They use an extreme

value distribution that depends on the global mean temperature and accounts

for model bias to predict changes in future regional extremes. This statistical

approach can derive useful additional information from existing model simulations

at low computational cost. However, it cannot provide the same multivariate and

physically coherent extreme samples as ExSamples. In addition, my results in

chapter 5 suggested that extreme value theory may underestimate the likelihood

of the most extreme events. A different possible methodology for exploring

the uncertainties in extremes could be to use a weather generator trained on

existing model projections (316). Yiou and Jézéquel (317 ) used a circulation

analogue-based approach to estimate how hot European summers could get in

the present-day. This approach does provide some physical coherence by linking

the estimated temperatures directly to the atmospheric circulation. However, it

does not include any other feedbacks, such as soil moisture, would be complex

to obtain multivariate information from, and cannot produce extremes driven by

processes (or combinations of processes) that lie outside of the training data.

As such, it is more suited to providing information about long-term extremes (ie.

on seasonal timescales) than about short-term extremes such as the Pacific

Northwest heatwave. The lack of feedbacks may mean that the likelihood

and intensity of the most extreme events is underestimated; though perhaps

information about these feedbacks could be included in the future (318).

6.3 Limitations

Although I have discussed various limitations within the individual chapters that

make up this thesis, in this section I consider some of the limitations of the

forecast-based approach to attribution developed and explored here as a whole.
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Forecast adjustment One key aspect of the counterfactual forecasts per-

formed here is that the model — or more specifically the model atmosphere and

land surface — adjusts continually to the imposed perturbations throughout the

integration. This means that the further into the forecast the event of interest

happens, the stronger the attributed impact of those perturbations is. At the same

time, as the forecast evolves, this effect becomes more uncertain in general

(though not necessarily always), due to the increasing dynamical noise arising

from the chaotic nature of the weather system. The combination of increasing

strength and uncertainty can make analysing and interpreting the results of the

counterfactual forecast experiments difficult. In chapter 4 I accounted for this

difficulty by making use of the fact that the attributable regional impacts of climate

change were near-linearly related to the coincidental measured level of global

warming. This linear relationship allowed me to benchmark the estimated impact

at each forecast lead time to the same level of global warming, regardless of

how adjusted they were at the time of the event in question. However, this linear

relationship is not guaranteed for every extreme event, and therefore it would be

valuable to find methodologies by which this adjustment could either be reduced

or removed entirely. I consider a few ideas to achieve this below.

Additional uncertainty dimensions In the experiments performed here, I

have only considered uncertainty arising from the chaotic nature of the weather

system. However, there are additional uncertainties associated with the approach

I have developed. One dimension that has been explored in prior work is the

uncertainty in the estimation of the “human fingerprint” that is removed from

the model initial conditions. For example, Pall et al. (68), who removed such a

fingerprint from the SSTs (and SICs) of the inital conditions in their naturalised

simulations, used four estimates of the warming pattern based on different coupled

climate models. This allowed them to test the sensitivity of their attribution
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statements to the warming pattern used. This approach of using an ensemble of

coupled climate models to derive a corresponding ensemble of human fingerprints

in order to more completely sample this dimension of uncertainty space has

since been used in several other studies (315); though many attribution studies

and systems still use a single estimate, often based on a multi-model mean

pattern (140, 184).

In this thesis, I used a single pattern estimated from observations. I used

observations to avoid over-reliance on a single coupled climate model, given the

biases and known issues present in such models. Although it would have been

extremely interesting to more completely explore this dimension of uncertainty

(given observations of the ocean subsurface are by no means perfect, especially

pre-2000), limits to computer resources prevented me from doing so within the

scope of this thesis. However, I hope that such an exploration could be carried

out in the future. Doing so would be conceptually straightforward, simply involving

treating historical output from a set of different coupled climate models exactly as

if they were the observations that I used. Quantitative attribution results derived

from each coupled model estimate could be compared to test the sensitivity

of such results to the estimate of the human fingerprint used. Because of the

variation in the representation of transient historical climate within coupled climate

models, each model-derived fingerprint might have to be scaled by (for example)

the present-day level of global warming within the model for consistency (319).

Singlemodel Within the core research of this thesis concerning forecast-based

attribution, I have used a single model, ECMWF’s IFS. There were a number

of reasons for this limitation: ECMWF provided a mechanism for me to access

the computing resources I required through their special project; there were also

individuals at ECMWF who provided the technical expertise I needed to design

and perform the counterfactual forecast experiments; the IFS is one of the (if
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not the) best performing numerical weather prediction models on a global basis

(320); and applying the counterfactual forecast methodology to other models

would have presented considerable technical challenges that lie beyond the

scope of this thesis. However, the quantitative results presented here may be

sensitive to this choice of model.

There is considerable variation in both the global and regional response to

external forcing among climate models (3, 229, 240, 245, 321, 322). This

variation is the reason why Philip et al. (61) suggest that having as large a set

of different climate models as possible is important for a probabilistic attribution

study. Although still a point that should not be overlooked, I argue that such

a multi-model assessment is not as important when using the counterfactual

forecast approach introduced here. Firstly, a successful prediction ensures (when

combined with a limited validation that the prediction did not occur for the wrong

reasons) that the model used is able to represent the physical processes of the

event in question, and that vital processes are not missing, as may be the case in

some climate models. This grounding in the specific physics of the event means

that the simulated response to external forcing is considerably more certain and

less model dependent. Secondly, the use of a reliable forecast ensemble to

assess probability ensures that these probabilities are representative of the full

space of possible states of the climate system given the initial conditions of the

forecast (323). This is not the case for climate model simulations, including PPEs.

However, despite these mitigating factors, there is a key reason why different

forecast models may produce different attribution results, even if they were equally

successful at forecasting a particular event. While these models are typically

validated on their ability to represent the synoptic-scale flows that drive local

weather, for attribution they must also be able to represent the response to

small perturbations in the external forcing and boundary conditions. Although

the physics behind this response should not differ excessively between different
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parameterisations used, it is possible that small differences in, for example,

the radiative transfer calculations used to determine the impact of CO2 on the

atmosphere could lead to differences in the results of an attribution study. Although

it is tempting to think of the potential inter-model (structural) differences in this

response in a similar manner to climate sensitivity (321), I argue that it should

be expected that the structural uncertainty will generally be smaller in the case

of forecast-based attribution. Climate sensitivity depends on many interacting

short- and long-term processes, while the response in forecast-based attribution

depends primarily on far shorter-term processes which are largely well-understood.

Palmer and Weisheimer (77 ) argues that the reliability of weather forecast models

can give us confidence in their ability to represent the earth-system response

to external forcing. Nevertheless, and especially for less predictable events,

I strongly believe that exploring the sensitivity of the counterfactual forecast

approach to themodel used is an important question for future research— and that

in the case of an operational system, the more models contributing the more robust

the results will be. To start this could be done by carrying out identical experiments

in (for example) the UKMO’s numerical weather prediction systems (324, 325).

Single event class This thesis has concentrated on extreme heat events.

However, given the major contribution of the thesis to attribution literature has

been the forecast-based approach taken, rather than understanding the specific

type of extreme event studied, this does represent a limitation. There are good

reasons for this focus on heatwaves, given the possible scope of a thesis: they

have severe associated impacts; are generally well understood; and have been

the subject of a large body of prior attribution literature. However, demonstrating

that the forecast-based approach can be used for other classes of extreme event

will be vital for the method to be taken up widely. A possible candidate for the next

class to study would be a high precipitation event. Attribution of high precipitation
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extremes is generally more challenging than of heatwaves, due to the smaller

spatial scales involved, though there still exists a considerable amount of prior

work that addresses this question. The high resolution of weather forecast models

certainly makes them a more appropriate tool than coarse climate models for

studying localised extremes.

Considering additional forcing agents In chapter 4, the ‘complete’ estimate

of human influence on the Pacific Northwest Heatwave was derived by removing

human influence on ocean heat content (by reducing the 3D ocean temperature)

and reducing the levels of CO2 in the atmosphere back to their pre-industrial

levels. Although we argue that this represents a good estimate of the total sum

of human influence, there are a number of additional sources of anthropogenic

forcing on the climate system that may need to be considered in future work.

Increased levels of other greenhouse gases such as methane or nitrous oxide

have a similar radiative effect to CO2, though the forcing from these other agents

is relatively small in magnitude compared to CO2 (229). The other significant

human contribution arises from aerosol emissions. Unlike greenhouse gases,

historical aerosol emissions have reduced the energy imbalance of the earth, thus

masking some of the global warming caused by greenhouse gases. Additionally,

while greenhouse gases are well-mixed throughout the atmosphere, aerosols are

highly localised in space due to their short lifetime. This means that their effect

on local climate can vary considerably from region to region. In this thesis we

only considered forcing from increases in CO2 concentrations since i) forcings

from these other sources approximately cancel each other out on global scales

(326), and ii) the IFS does not include an interactive atmospheric chemistry model,

but instead uses an aerosol climatology (327 ). There has been relatively little

research into the effects of aerosols on heatwaves specifically (121), but it has

been found that aerosol reductions in the future exacerbate increases in heatwave
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magnitude arising from continued greenhouse gas emissions (328). Including

the effect of these additional forcing agents on specific extreme weather events

would be an extremely interesting direction for future research. The effect of

aerosols may be especially interesting for precipitation extremes, since aerosols

are known to have direct impacts on cloud formation. However, while including

the radiative effects from other greenhouse gases would be straightforward, and

could be done exactly as has been for CO2, including the effects from aerosol

emissions would likely be considerably more technically complicated and subject

to large uncertainty, though might be possible using a version of IFS that includes

a tropospheric aerosol scheme (329).

6.4 Future research directions

6.4.1 Addressing the rapid atmospheric adjustment

In this section, I discuss possibilities for how the methodology used here could

be altered in order to remove the issues associated with the rapid adjustment of

the forecast model, in the atmosphere and at the land surface, to the perturbed

intial state. Removing (or alleviating) this adjustment would considerably simplify

the interpretation and analysis of couterfactual forecast experiments.

Perturbing the initial atmospheric state The simplest way in which to

initialise the model from an atmospheric (and land-surface) state that is closer

to thermodynamic equilibrium would be to attempt to perturb it such that it is

consistent with the changes made to the oceanic and boundary (CO2) conditions.

This approach is based on the pseudo-global warming framework (311), and

has been used by a number of recent attribution studies (168, 196, 209, 242 ,

313). However, unlike these studies and the original framework, which perturb
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the lateral boundary and initial conditions of a high-resolution nested regional

model, in our case we would need to perturb the forecast model globally. These

studies typically perturb 3D thermodynamic fields such as temperature, humidity

and geopotential based on simulated climate change in GCMs. However, it

would be possible to avoid reliance on such models by estimating anthropogenic

fingerprints in these fields from long-term reanalysis data (88, 330) exactly as was

done to estimate the ocean state perturbations in chapter 4. The disadvantage of

this approach would be that the imposed atmospheric perturbations could cause

unexpected changes to the physical processes driving the event in question

that would be difficult to distinguish from real attributable changes to the event.

For example, changes to the temperature and moisture fields could affect local

atmospheric circulation in a way that is not necessarily physically consistent with

how the same event might have evolved in a climate without human influence.

Assimilating the perturbations The simple perturbation approach could be

extended to counter some of the issues with physical consistency by coupling it to

the data assimilation procedure used to generate the model initial conditions. Data

assimilation aims to create the best possible forecast initial state by combining

recent model predictions with observations (331). It may therefore have the

potential to generate a balanced — but also physically consistent — initial state

for the couterfactual forecasts. Data assimilation has been previously proposed

as a technique that could be used for extreme event attribution by Hannart et al.

(170), though they suggested using likelihoods output from the data assimilation

procedure directly, rather than using the procedure to create initial conditions for

couterfactual forecasts. The basic idea would be to replace the operational version

of the forecast model with an ‘unforced’ version during the data assimilation cycle.

This unforced version would essentially be identical to the perturbed initial and

boundary condition model run to produce the counterfactual forecasts in chapter
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4. The aim behind this unforced data assimilation cycle would be to produce a

physically consistent initial state in the unforced model that is as close as possible

(in such a climate without human influence) to the observed state of the climate

system. How similar the original operational and unforced counterfactual initial

states produced would be would depend heavily on the real-world state at the time

of the data assimilation. Although this is a promising idea in theory, it would likely

face significant technical challenges. For example, some of the observations

used in the data assimilation may also have to be perturbed for the procedure to

succeed (especially when using a perturbed ocean state if observations of the

ocean are used). Given the incomplete nature of the observations and variety of

their sources, altering observations before the data assimilation step could be

extremely difficult. These potential challenges mean that collaboration with an

expert in the operational data assimilation system used would be essential.

An operational approach using successive forecasts The previous two

methods could be used to perform a counterfactual forecast for a single event.

My final suggestion is potentially simpler than both, but would only work in the

case of an operational, regularly run counterfactual forecast system for attribution

and projection. This idea would be to use the previous forecast to calculate the

perturbation required to create a balanced initial state, and is probably clearest

when expressed mathematically. If we write the operational (assimilated) initial

state at time τ as χ(τ), the operational ‘forecast operator’, that transforms an

initial state into a prediction at time t after initialisation as G1
t, and the equivalent

counterfactual operator as G0
t, then operational and counterfactual forecast states

X at time t after initialisation time τ can be written respectively as
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X0(t|τ) = G0
t[χ(τ)] and

X1(t|τ) = G1
t[χ(τ)] .

And the difference between the factual operational state and counterfactual state,

as estimated by the physics of the forecast model can be written

∆X(t|τ) = X1(t|τ) − X0(t|τ) . (6.1)

Now for a sufficiently small time t, such that the model has significant skill and

dynamical noise is low, this ∆X represents a good, and physically consistent,

estimate of the difference between the factual and counterfactual worlds at time

τ+ t. Hence if we then want to issue a successive forecast at time τ+ t, rather

than simply using χ(τ+ t) to initialise both forecasts, we could use χ(τ+ t) for

the operational forecast, and χ(τ + t) − ∆X(t|τ) for the counterfactual forecast.

As this routine is applied to several successive operational and counterfactual

forecasts in a row, the differences between ∆X(t|τ) and ∆X(t|τ+ t) should tend

to a small (though non zero) value, as ∆X tends towards the ‘real’ difference

between a balanced factual initial state and an analogue state in the counterfactual

world. This difference between successive ∆Xs will not ever reach zero, since

the difference between factual and counterfactual worlds at a certain time is

dependent on the climate state at that same time. After performing this routine

several times, this ∆X should tend towards the difference between assimilated

factual and counterfactual initial states (ie. as would be obtained by assimilating

the perturbations, described above).

The need to continually apply this adjustment to successive forecasts, perhaps

a few days apart, is why this routine would only work in the case of an operational
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system. Its relative simplicity in comparison to the perturbed data assimilation

approach, and physical consistency compared with the simple perturbation ap-

proach make it attractive. Conceptually, it is somewhat similar to the methodology

developed by Wang et al. (207 ). They used separate long-running integrations

of the same forecast model at different CO2 levels to derive the perturbations

applied to the initial conditions for their counterfactual simulations. The main

differences are that i) this approach does not require costly separate simulations

to determine the perturbations since the perturbations are developed through

several successive forecasts, and ii) the perturbations generated here would

be more closely linked to the actual state of the climate system at the time the

forecasts are initialised. However, despite the advantages of this approach, it is

still very likely that there would be technical challenges to address. For example,

we would have to ensure that errors in ∆X, possibly arising from dynamical noise

or forecast error, do not grow between successive forecasts. If this happened,

the factual and counterfactual initial states would move further and further apart,

and any differences between the factual and counterfactual forecasts could then

not be attributed to human influence because of the confounding error present.

The shorter the time between successive runs of such an operational attribution

system, the less likely for issues like this to occur. The other clear challenge

would be determining what variables to perturb. Although it would be possible

to perturb everything in the initial conditions, it might be more robust to only

apply this adjustment to thermodynamic variables that have a physical basis for

being perturbed (just as in the pseudo-global warming approach). Nevertheless,

this approach is an intriguing prospect for robust operational attribution using

a weather forecast system.
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6.4.2 Expanding the scope of this work

This section explores various tests for the methodology used here that should

be carried out in further work to more completely assess the robustness of the

approach. These tests could be completed without any major changes to the

methodology itself.

Alternative extremes As mentioned in the Limitations above, this thesis has

focused on heatwaves. However, there are many other weather extremes that

are of scientific and public interest. Hence, testing the robustness of the forecast-

based approach to other extremes would be a natural next step to take. Given

their significant coverage in the literature, a high precipitation event would be

a good choice for such a test. I note that there would be potential additional

considerations when examining a precipitation extreme compared to a heatwave.

Firstly, the smaller spatial scale of such precipitation extremes means that these

scales might have to be taken into account during the attribution step — what if

the centre of the extreme shifts in the counterfactual world (84)? Such shifts mean

that, especially if linking the precipitation to flooding impacts, pooled catchments,

rather than catchments on an individual basis, may have to be considered. The

other significant difference is that precipitation forecasts are typically less skillful

than temperature forecasts for lead times of more than a few days (332–337 ). This

reduced skill (particularly during the 1-2 week period, where temperature forecasts

are generally good) means that shorter lead times may have to be used to ensure

that the forecast model is still able to capture the extreme event within its ensemble

— even if the forecast is reliable. Reducing the lead time would make addressing

the forecast adjustment to the perturbed initial conditions even more important.

Alternative forecast models Another limitation discussed above was the use

of a single model, ECMWF’s IFS. As such, testing the sensitivity of this approach
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to the particular forecast model used would be an important step. It would make

sense to begin with a forecast system that uses the same ocean model as the IFS,

NEMO 3.4 in ORCA025Z75 configuration (226). This would allow bit-identical

perturbations to be used, thus minimising differences that arise from experimental

setup as opposed to those that we are interested in that arise from model choice.

However, a shared ocean model is not an absolute necessity as one of the steps

taken to produce the ocean state perturbations in chapter 4 was to interpolate

the perturbations onto the ORCA025Z75 model grid — in theory any ocean grid

(and thus any ocean model) could have been used. The UKMO’s medium-range

MOGREPS-G and seasonal GloSea5 ensemble forecasting systems both use

the NEMO ocean model on the same grid, and so may make good candidates

for applying the forecast-based approach in an alternative model (325).

Incorporating perturbation uncertainty Including uncertainties associated

with the estimation of the perturbed initial state in the forecast-based approach

may be important, as discussed above and shown in previous work (68, 181).

The main difficulty of including these uncertainties comes from the additional

computational cost: if we were to simply repeat our experiments using climate

model-derived estimates of these perturbations the cost would scale with the

number of climate models used. In order to get a reasonable representation

of the uncertainty, O(10) model estimates would be required (as in 181). This

would immediately increase the computational cost by a factor of 10 — possibly

feasible for a single experiment, but much less desirable from an operational

perspective. However, given the current operational ensemble prediction system

at ECMWF already uses a 5-member ensemble of ocean analyses from which

the 51 forecast ensemble members are initialised from, it is possible that we

could use a similar ensemble of perturbations within a single forecast ensemble.

There are a number of additional outstanding questions: i) how to choose the
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climate models from which these perturbations are estimated; ii) whether to give

the climate models equal weight, or weight them based on some form of model

evaluation (this is especially relevant for the latest generation of climate models,

the CMIP6 ensemble, 188, 338); and iii) if using both observation- and climate

model-based estimates, how to combine them.

6.4.3 Alternative applications

This thesis has largely focussed on the physical attribution of extreme weather

events — which is an intrinsically backward-looking question. However, the

approach explored here has potential to inform future projections of climate change

as well. In this section, I discuss forward-looking applications of this work and also

how it might further research into attribution and projection of the societal impacts

arising from extreme weather, which is a rapidly developing field at the moment.

Projections of future extremes The question that this thesis has been

concerned with answering is how human influence on the climate over the

past century or so has affected the probability and severity of extreme events

occuring in the present-day. This question is of considerable importance for the

numerous reasons detailed in chapter 1. However, an arguably more policy-

relevant question is that of how extreme weather events may change in the future

— this is especially critical for adaptation planning (64). Providing information that

is specific enough to be useful in a policy context often requires more granularity

than coarse climate models are able to provide. Hence, statistical or dynamical

downscaling is typically used in order to increase the utility of climate model

simulations — for example in the UKCP reports (247 , 248, 299, 339). However,

given the structural errors in current climate models, this approach cannot be

expected to provide entirely robust and reliable probabilstic imformation, especially
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on the scales that adaptation planners require. This was the reason why in 2015

Hazeleger et al. suggested that a complementary approach would be to construct

‘what if’ scenarios using high-resolution weather forecast models that would be

able to provide the specific information required; especially given their position

in current extreme weather hazard warning systems (84). This approach was

called ‘Tales of future weather’ (183).

I suggest that the forecast-based approach developed in this thesis could

be an attractive methodology for constructing such Tales. The idea would be to

take a set of damaging historical extreme weather events (that were successfully

forecast), perturb the forecast initial conditions exactly as done in chapter 4,

and thus produce realisations of these events in a warmer world. These future

forecasts could then be used to examine how future impacts might be worse

than in the present, and thus how adaptation policies could be implemented

in order to mitigate such impacts. I have already essentially done this future

forecast experiment — though here they were used to test the linearity of the

response, rather than for climate projection specifically. The methodology I

have used to calculate the anthropogenic fingerprints to be removed from the

forecast initial conditions could not just determine the estimated perturbation

between pre-industrial and present-day climates, but between climates separated

by specified levels of global warming (5). For instance, one could construct

forecast-based Tales for policy-relevant future warming levels of 1.5, 2, 3 and

4 °C. One advantage that this forecast-based approach has over a storyline

approach (eg. 83) in this context is that ensemble forecasts do not just reproduce

the event as it unfolded, but also possible alternative realisations that may be

even more extreme. This ‘ensemble-boosting’ aspect of such a forecast-based

approach to extreme weather projections could help to ensure potential impacts

are not underestimated as a result of limiting our view to the outcome that did

occur by exploring the range of physically consistent possible outcomes (201).
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One issue with using an optimal fingerprinting approach to estimating the

perturbations required is that it assumes that the pattern of global warming remains

constant into the future, which is not certain to be the case, in particular for the

higher levels of warming. The discussion above on incorporating perturbation

uncertainty is relevant to this (340). For example, perturbations to particular

levels of global warming could be derived from coupled climate models in addition

to observations in order to more completely span the space of possible future

patterns of warming. Another apparent issue with this forecast-based approach

arises due to the reliance on historically damaging events. The length of the his-

torical record means that regional coverage of such events will vary considerably.

For example, while many regions may have experienced 1-in-100 to 1-in-1000

year heatwaves over the course of the historical record, many will not have. This

could potentially leave these regions under-informed in terms of the risk from

climate change exacerbated extremes. However, there are already-developed

approaches to counter this issue in the literature. One of the most relevant is the

UNSEEN approach (236, 249). Briefly, this approach uses seasonal ensemble

hindcasts to considerably increase the effective sample size of such events

within the historical record. I suggest that one way in which useful Tales could

be constructed would be to not only look for damaging events in the historical

record, but also within the seasonal and medium-range hindcast ensembles that

are available. Such ‘unseen’ events could then be re-forecast within a future

climate to explore how they may change under continued global warming. A

disadvantage of this approach is that such unseen events were not necessarily

successfully forecast (which is one of the key features of the forecast-based

approaches explored in this thesis), though model fidelity and reliability could

be validated in other ways in this case (341).
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Impact assessment Impact attribution is a rapidly growing field of research

(42 , 342). Linking the attributable physical changes due to climate change to the

socioeconomic impacts can be extremely powerful as a communication tool and

as a way to drive policy (46). Some examples of this linkage include economic

damages from hurricanes (343, 344) and mortality from heatwaves (102 , 103,

200). Despite its clear importance, impact attribution has only taken off recently,

possibly due to the difficulties that arise as a result of the additional uncertainties

(and non-linearities) associated with linking physical to socioeconomic impacts.

This section will not be a lengthy discussion, but I suggest that there are a number

of reasons why forecast-based approaches could complement and advance

current approaches.

One key reason, that I havementioned previously, is that weather forecasts are

already built into the modelling chains used to assess risk from extreme weather by

combining physical hazard and vulnerability information (84). Given how important

the vulnerability aspect of extreme weather risk is (243, 345), using models

already familiar to those with relevant expertise is a significant advantage. In

additional to this familiarity advantage, the fact that weather forecasts are already

key components of many well-validated impact prediction systems (for example,

the GloFAS flood warning system 346) means that impact attribution may be able

to be carried out with very little technical work — simply by switching operational

weather forecasts for counterfactual ones. For example, Wilkinson et al. (347 )

developed a scheme for translating weather forecasts into damages. Such a

scheme could essentially be used ‘as is’ to generate estimates of attributable

damages to climate change. Trustworthy estimates of attributable damages

could further support litigation relating to increased extreme weather risk. The

arguments that I have made at length for forecast-based approaches in this thesis

are also very relevant here: significantly increased resolution, well-established

reliability, implicit and explicit model validation and event specificity. This is
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certainly not to say that climate models cannot provide useful information about

general impacts arising from climate change (for example, through the storyline

framework), but for assessing risks from many types of extreme weather, I argue

that weather forecast models would be a more robust tool (77 ).

6.5 Concluding remarks

In this thesis, I have explored a number of way in which to perform attribution

and projection of extreme weather. I have focused on developing a forecast-

based approach to attribution based on using reliable operational models that

were unequivocally able to simulate the event of interest, as demonstrated by

a successful prediction. This approach not only increases the confidence we

can have in attribution statements made, but also ensures that we are answering

the specific question of how human influence on the climate has affected the

individual event in question. A final key benefit of this approach is that it is based

on models that are already run operationally, thus potentially opening the door

to an operational attribution service that could mitigate the existing selection

bias in extreme weather attribution studies. I additionally investigated a novel

methodology for producing a rich set of samples of future extreme weather using

an atmosphere-only model. This work could produce information relevant to the

limits of adaptation in the future, based on the wide variety of extreme scenarios it

generates. I argue this methodology would be complemented by a forecast-based

approach to climate projection of extremes that could provide a more specific

and detailed understanding of the most damaging events.

A key scientific limitation of the forecast-based approach I have developed

lies in the initialisation of the model. As performed in this thesis, I have not

perturbed the initial atmospheric or land-surface state. How to do this robustly

is an important question for future work: though I have suggested a few ways
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in which this might be done. In order to increase the impact of this approach,

I suggest that other directions for future work would be to look into different

classes of extreme besides the heat events that I have concentrated on in this

thesis; and to implement it in other forecast models. Finally, I argue that similar

forecast-based approaches could be used to look forwards into the future of

extreme weather, or to improve the linkage between physical hazards and their

socioeconomic impacts, potentially allowing for attribution and projection of such

impacts from individual extreme events in the future.

I am excited to see how synthesising climate science and weather prediction

can inform society about and prepare society for the risks from climate change

in the coming years.
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A
Resources

This appendix lists and briefly describes additional non-research output that I

have produced over the course of my thesis.

A.1 Python packages

mystatsfunctions mystatsfunctions is a repository of scripts that per-

form basic statistical operations. It contains two modules: OLSE, for computing

vectorised linear regression analyses; and LMoments, for fitting distributions

using the method of L-Moments (155, 284, 285, 287 ). The repository is publicly

available from https://github.com/njleach/mystatsfunctions.

moarpalettes moarpalettes is a repository of scripts that allow easy load-

ing of numerous colour palettes for use in seaborn or matplotlib. I have made
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extensive use of it throughout the thesis. The repository is publicly available from

https://github.com/njleach/mystatsfunctions.

FaIRv2.0.0-alpha FaIRv2.0.0-alpha is a simple climate model for use

in probabilistic future climate and scenario exploration, integrated assessment,

policy analysis, and education. I led a model description paper about it during

this PhD (348). The model code alpha release is publicly available from https:

//doi.org/10.5281/zenodo.4683173.

A.2 Code and data availability

Chapter 2 Code used to carry out the analysis in chapter 2 is publicly available

from https://github.com/njleach/Ch1_EU-heatwave-2018.

Chapter 3 Code used to carry out the analysis in chapter 3 is publicly available

from https://doi.org/10.5281/zenodo.5416058. Data required to

reproduce the analysis is available from https://doi.org/10.5285/DD

6A312C701F47778390DE50CD052071. Further data produced by the study

are available from ECMWF’s MARS.

Chapter 4 Code used to carry out the analysis in chapter 4 is currently available

upon request from https://github.com/njleach/PNW-attributi

on-manuscript.

Chapter 5 Code used to carry out the analysis in chapter 5 is publicly available

from https://doi.org/10.5281/zenodo.6327159. Data required to

reproduce the analysis is available from https://doi.org/10.5281/ze

nodo.6327360.
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A.3 Public outreach & engagement

Over the course of my PhD I have been lucky enough to have the opportunity

to perform a number of activities aiming to engage with an audience outside the

immediate scientific community. These activities are listed below.

Article in CarbonBrief I led the writing of an article in CarbonBrief, aiming

to explain why we are particularly interested in forecast-based approaches, and

how they differ from existing ones. The article is found at https://www.carb

onbrief.org/guest-post-how-weather-forecasts-can-spark-a

-new-kind-of-extreme-event-attribution.

Article in Science I was quoted in a news article in Science following the

Pacific Northwest Heatwave exploring the various ways in which a number of

different groups are trying to understand extreme events better. The article

is found at https://www.science.org/content/article/record

-shattering-events-spur-advances-in-tying-climate-chang

e-to-extreme-weather.

Public talk on extreme event attribution I delivered a live-streamed talk

about the attribution of extreme weather events as part of the Oxford@home

COP Conversations series. In it, I try to briefly cover the current state of the

science, as well as going into some detail about my own PhD research into

the use of weather forecast models for attribution. The recording is found at

https://youtu.be/171HEr-6b6w.

Public webinar on ExSamples I delivered a talk on the underlying science

as part of a webinar explaining the work described in chapter 5 that I and several
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co-authors had carried out. The recording is found at https://youtu.be

/O--6xE_hgJI.

Appearance on Radio Ecoshock I was interviewed by Radio Ecoshock about

the work described in chapter 3 of this thesis. The edited recording of this interview

is found at https://www.ecoshock.org/2022/02/fixing-the-clima

te-hopes-and-hazards.html.
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